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I. INTRODUCTION
A. Statement of the Problem

In recent years aircraft gas turbine engines have been
reduced in size and welght by incorporating fewer, but more
highly loaded compressor and turbine stages. Relative flow
velocities near the tin sections of these blade rows have been
pushed well into the transonic regime. In this case, blade
profile design or selection becomes more critical than in
conventicnal subsonic machines; slight variations in blad
profiles can induce strong shock waves. Also, the use of
highly cambered blades for increased blade loading may lead to
boundary layer separation on the blade suction surface. 1In
contrast to subsonic experience, a smooth blade profile in
transonic or supersonic flow does not guarantee smooth blade-
surface pressure distributions. Thus,; the designer is faced
with the problem of solving for the blade-to-blade flow in
determining aerodynamically efficient blade designs.

The purpose of this study was to develop an accurate
numerical method for solution of steady, inviscid transonic
blade-to-blade flow in turbine cascades. In the particular
turbine cascade cases of interest, shock losses are generally
small; thus capability of the analysis method to predict strong
shocks was not considered important. Also, it is generally

true in transonic cascade flows that the Peynoids number is



sufficiently large so that viscous effects may be neglected,
and that inviscid flow solutions will yield acceptable results.
B. Solution Methods for Flow Problems
in Gas Dynamics
The equations of motion for two-dimensional steady
inviscid flow are not easily solved in the transonic regime.
In steady subsonic flow, the system of equations is elliptic,
and the solution at a point in the flow field depends on all
boundary data (jury problem). In steady supersoaic flow,
however, the system of equations is hyperbolic, and the flow
solution depends only on upstream data (initial-value problem).
Hence, a single numerical method does not exist for the solution
of the flow in both the subsonic and supersonic regimes. A
number of solution methods based on approximations to the
physical flow model have been used fcr mixed-flow analysis
(e.g. method of integral relations (ref. 1) and streamline
curvature methods (ref. 2, 3); however, the accuracy of these

methods may be guestioned on the basis of the mathematical

model used.

An alternate approach for gol

tion of steady transcnic
flows is available if one considers the steady flow as the
asymptotic limit in time of a transient flow. With the addi-
tion of time as a third independent variable in two-

dimensional flow, the equations of motion become hyperbolic

regardless of flow regime. The analysis problem is then an



initial-value or Cauchy problem. Due to the advent of high-
speed digital computers, time-dependent techniques have
received much attenticn in computational fluid dynamics in
recent years and hold considerable promise for cascade flow
analysis.

The numerical solution methods for hyperbolic systems of
partial differential equations in three independent variables
can be classified as; (1) finite-difference methods, and
(2) characteristic methods. Finite-difference methods involve
replacement of the derivatives in the system of equations by
finite-differences, followed by solution of the difference
equations. In characteristic methods, the original system of
equations is first replaced by an equivalent system of compati-
bility relations written on characteristic surfaces. The

system of compatibility relations is then written in finite-

difference form for numeri

h
- -t -

Variations on the finite-difference methods include
methods utilizing artificial viscosity (ref. 4, 5). 1In these
methods, extra terms are added to the difference equations to
simulate viscous terms in the Navier-Stokes equacions. These
added terms stabilize the numerical solution in regions of
large property gradients and allow a direct accounting of
embedded shock waves in transonic flows. A major problem
encountered with finite-difference methods is incuarred in

devising accurate boundary point calculations at surfaces which



are not coordinate planes. At these points, extrapolations or
interpolations must be used. Even if the boundaries are
coordinate planes, loss of accuracy results because derivatives
normal to the boundaries can only be replaced by one-sided
differences.

A number of investigators have developed cascade analyses
based on finite-difference methods. Gopalakrishnan and Bozzola
(6, 7) have used MacCormack’s scheme (8) for solution of
transonic flows in turbine and compressor cascades. Un-
fortunately, they presented no experimental data to verify the
computed results. McDonald (9) has also developed a finite-
difference scheme in which numerical representaticns of the
equations of motion in intégral form are employed. This
scheme, called the "finite area" method, was applied by
McDonald to transonic flows in turbine cascades; good compari-

snong of hi

3]

.
AeamrmIttEA~AA vwAmay T s el
i m v L tas O W

h experimeiital Gata were
obtained.

Characteristic methods are, in ger
than finite~difference methods because they adhere closely to
the physical flow model. 1In particular, the differential
domain of dependence of the solution point is considered.
Another advantage of characteristic methods is that accurate
numerical solution procedures can be devised at flow field

boundaries. A disadvantage is the complexity of the formula-

tion and programming tasks. It is for this reason, perhaps,



that characteristic methods have not been applied to the
cascade problem.,

Since the objective of this study was to develop an
accurate numerical method for solution of steady transonic
flows in cascades, the method of characteristics was employed.
Rigorous treatment cof the differential domain of dependenée
which lies upstréam of solutiQn points in transonic flows is
necessary to obtain accurate solutions. Also, the advantage
in accuracy afforded by characteristic methods at boundary |
points. is extremely important in.the cascade application where
a large number of complex boundary conditions exist.

Many numerical integration schemes for the method of
characteristics have beeu proposed and used for solution of
flow problems in gas dynamics involving three independent
variables. These various schemes are based on different
wamerical integratlon networks formed from combinations of

characteristic surfaces. Although most of these schemes have

or three dimensional steady supersonic flow, they apply equaily
well to either of these flow problems. Two infinite families

" of charactaeristic surfaces exist in either of these flow
problems. One family of surfaces (flow surfaces) is tangent

to the particle path or streamline and the other family of
surfaces (wave surfaces) is locally tangent to the character-

istic cone, which in two-dimensional unsteady flow is the



sonic cone and in three-dimensional steady supersonic flow is
the Mach cone. An infinite number of combinations of character-
istic surfaces may be used for numerical solution, thus
explaining why the many different numerical integration net-

works have been proposed in various characteristic solution

methods.

C. Numerical Integration Networks for the
Method of Characteristics

1. General

——————e

A survey of the literature on numerical integration net-
works for the method of characteristics is presented in the
following sections. Similar surveys have been given by Fowell
(10), Chushkin (11), Sauerwein (12), Strom (13), ‘and Ransom
(14). Prior to the discussions of the various schemes, how-
ever, a few remarks regardfhg construction, accuracy, stability
and computation time required in the different types of
characteristic networks are appropriate.

The characteristic networks, as presented here, are

divided into characteristic surface networks and bicharacter-
istic line networks. Characteristic surface networks utilize
the mutual intersections of characteristic surfaces, or the
intersections of characteristic surfaces with noncharacter-
istic reference planes. 1In bicharacteristic line networks,

the generators of the characteristic cone are employed. 1In

general, characteristic surface schemes are more efficient



because of the simplicity of the network. On the other hand,
schemes based on bicharacteristic line networks are usually
more accurate due to the more rigorous treatment of the dif-
ferential domain of dependence.

Characteristic networks can be further subdivided on the
basis of direct or inverse schemes. In direct schemes, the
network lines are projected forward from known base points in
the initial data surface to locate the solution point. 1In
inverse schemes, the base pvints are located by projecting the
network lines back from a predetermined solution point, and
base point flow properties are then determined by interpolation.
Inverse schemes allow the solution to advance in parallel
planes, thus simplifying the global solution algorithm. How-
ever, direct schemes require fewer interpolations, thus
increasing accuracy and decreasing computation time.

All numerical solution schemes for hyperkelic sysicm
partial differential equations must be examined for stability
before implementation. Many criteria exist for testing stabil-
ity, and an extensive discussion of these criteria is given
by Richtmyer and Morton (15). All the stability criteria are
based on linear difference equations. For the case of nonlinear
difference equations, the approach taken is to linearize the
difference equations and to apply these same criteria locally.
Courant, Friedrichs, and Lewy (16) have shown that a necessary

condition for stability is that the domain of dependence of the



system of differential equations mugt be contained within the
convex hull of the differencing scheme defined as the polygon
formed by connecting the outermost points used in the differ—
encing scheme on the initial data surface. For two-dimensional
unsteady flow, the differential dcmain of dependence is the
region enclosed by the intersection of the sonic cone, whose
vertex lies at the solution point,with the initial data surface.
This geometric stability test, called the Courant-Friedrichs-
Lewy (CFL) stability criterion, is particularly useful for
preliminary evaluation of proposed networks.

In the numerical solution incorporating these schemes,
fin*te-difference approximations of the compatibility relations
are written along the network lines between base points on the
initial data surface and the solution point. The minimum

number of compatibility relations employed is equal to the

number of dependent variahles appearing in the o
C
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egua-
tions. In first-order accuracy schemes, the coefficients in
the difference equations are evaluated on the initial data

sw face, and the solution is determined using a single pre-
dictor step. More accurate schemes are obtained by supple-
menting this procedure with a corrector step wherein the
coefficients in the difference equations are updated with

average values between the base point and solution point.

Many schemes use multiple corrector steps.



In order to develop second-order accuracy schemes, Cross
derivatives appearing in the wave surface compatibility rela-
tions (i.e. derivatives along a direction transverse to the
network lines) must be either evaluated or eliminated at the
solution point. In some characteristic surface networks, the
solution point is coupled to a previously determined neighbor-
ing point in the solution plane, and the cross derivatives at
the sclution point are approximated by simple differences
‘between the points. However, it does not appear that second-
order accuracy is achieved with these schemes because the dif-
ferential domain of dependence is not rigorouvily considered.
In bicharacteristic line networks, the cross derivatives can
only be calculated if the entire solution plane is solved and
the solution repeated using derivatives calculated from the

first solution. Butler (17), in his integration scheme utiliz-

- - e . -
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the pentzhe
difference equations by introducing one additional wave surface
compatibility relation and a noncharacteristic relation.

There is an infinite number of bicharacteristics passing
through the sclution point from which to choose for construc-
tion of inverse bicharacteristic line networks. Butler (17)
and Chu (18) have devised schemes which incorporate any number
ot the infinite family of bicharacteristics. In these schemes,

the finite-difference form of the bicharacteristic compatibility



10

relations are integrated around the circumference of the dif-
ferential domain of dependence. While the accuracy of these
methods increases with the number of bicharacteristics, the
computational time also increases due to extensive interpola-
tions required at the base points to evalua:e the integrals.
Practical schemes have been developed using more than the
minimum number of finite-difference relations required for a
determined system. This resdundant solution approach has been

used by Pridmore Brown and Franks (19), Powers, Niemann and Der

e~

20), and Chu (21) where an overdetermined system of four wave
surface compatibility relations was solved for three dependent
variables in a least squares sense. Sauerwein (22) and Strom
(13) determined multiple solutions using the minimum number of
relations required for a determinant system and subsequently

averaged the results.

2. Characteristic surface networks

a. Network of intersections of reference planes with

characteristic surfaces The network of intersections of

reference planes with characteristic surfaces, as discussed by
Ferrari (23), Moeckel (24), and Séuer (25) for solution of
three-dimensional supersonic flow, is a direct scheme utilizing
intersections of characteristic surfaces with orthogonal
coordinate planes. As shown in Figure 1.1, the solution is
advanced on constant-x, planes. The solution point (8) lies at

the intersection of two characteristic wave surfaces and the
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WAVE SURFACES

STREAM SURFACE ‘1)

X3 x3=c0N3TANT/ SOLUTION POINT

Figure 1.1. Network of intersections of reference planes
with characteristic surfaces

LA N souution pom

BICHARACTERISTICS
STREAMLINE

Figure 1.2. Prismatic characteristic surface network
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reference plane, X; = constant. Initial data points (1), (2),
(5), and (6) lie alcng the lines of intersection of the initial
data plane and the planes, X3 = constant. Point (4) is a
previous solution point. The wave surface compatibility rela-
tions are written along line (5) - (8) and (6) - (8) with cross
derivative terms evaluated along the wave surface intersection
(4) - (8). A compatibility relation written along the stream-
line projection (7) - (8) is used as an additional equation for
solution of nonhomentropic flows. Following the solution at
point (8), the solution at point (9), lying in the plane X, =
constant, is predicted using interpolation or extrapolation
along one of the characteristic surfaces.

The major disadvantage of this network is that the CFL

stability criterion is violated whenever the initial data

pcints do not include the differential domain of dependence of

icn point. Also, the accuracv of the scheite is
reduced due to interpolations required to maintain the solution
on parallel planes (xl = constant). A further difficulty in
applying this scheme is that additional end conditions on the
constant-x, planes are required to initiate calculations on

the solution plane. If planes of symmetry do not exist, an

iterative procedure is required to obtain closure of the solu-

tion between end planes.
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b. Prismatic characteristic surface network Holt (26)

developed a network based upon the works of Ccburn and Dolph
(27) and Titt (28). This network was later named the prismatic
characteristic surface network by Fowell (10). The network.
shown in Figure 1.2, is similar to the network of intersections
of reference planes with characteristic surfaces, except that
the end planes are meridional planes through the character-
istic cone defined by two bicharacteristics and the streamline.
As pointed out by Heie and Leigh (29), this scheme violates the
FL stability criterion. This method shares the same dis-
advantages a:s the network of intersections of reference planeé
and characteristic surfaces regarding interpolation to main-
tain the solution on parallel planes, and regarding initiation
and closure of the solution on end planes. Apparently, no
attempts have been made to use this scheme.

cayr characteristics network The near characteor-

istics network, shown in Figure 1.3, is formed by the inter-
sections of twe characteristic wave surfaces and one character-
istic flow surface with a single reference plane. An inverse
approach is used in which the near characteristics are pro-
jected back into the initial data surface from the fixed solu-
tion point (4). Flow properties at base points (1), (2), and
(3) are determined by simple univariate interpolations along
the intersection of the initial data surface and the reference
plane. Cross derivatives in the wave surface compatibility

relations are evaluated only on the initial data surface.
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CHARACTERISTIC /\ REFERENCE PLANE
CONE
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Figure 1.3. Near characteristics network
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Figure 1l.4. Tetrahedral characteristic surface network
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Originally, the method was developed by Sauer (30) and Holt
(31) for two-dimensional unsteady flows; however, it has been
applied to three-dimensional supersonic flow field calculations
by Moretti (32, 33), Rakich (34, 35), and Katskova and Chushkin
(36). Recently, the method has been proposed and/or used at
boundaries in hybrid time-dependent calculations incorporating
finite-difference procedures at interior points, by Moretti and
Abbett (37), D'Souza, Molder and Moretti (38), Serra (39, 40),
Kentzer (41), Porter and Coakliey (42), and Gopalakrishnan (43).
The I

he main advantage of the near characteristics scheme is

its simplicity. Only three near characteristics are used, and

well suited to three-dimensional steady supersonic flows about
axisymmetric bodies where the reference planes are meridional

nlanes throungh the bedy awis. However

1 the hed Y , it is nect
the method can be applied with equal success to the general
two-dimensional unsteady flow problem where cross flow normal
to reference planes can result in the base points, as shown

in Figure 1.3, lying completely outside the differential domain
of dependence.

d. TMetrahedral characteristic surface network The

tetrahedral characteristic surface network is a direct scheme
originally proposed by Thornhill (44). In this network, shown

in Figure 1.4, the solution point (5) is located at the mutual



intersection of three characteristic wave surfaces through
lines (1) - (2, (1) - (3), and (2) - (3), where points (1),
(2), and (3) un. known initial data points. Bicharacteristics
(1,2) - (5), (1,3) - (5), and (2,3) - (5) are located as lines
of tangency between the characteriétic cone and the three
characteristic planes. The particle path or streamline (4) -
(5), projected from the solution point back to the initial data
surface, provides a fourth characteristic line. Flow
properties at base points (1,2), (1,3), and (2,3) are deter—‘
mined by linear interpolation along lines (1) - (2), (1) - (3),
and (2) - (3}, respectively. As shown in Figure 1.4, the CFL
stability criterion is satisfied; hence a stable scheme is
expected. Tsung (45) used this method to solve the three-
dimensional steady flow past a conical boattail and a delta
wing at an angle of attack. Reed (46, 47, 48) also used this
method for solving three-dirensional supersonic rotational flow
in nozzles.

The main disadvantage of this scheme is the large number
of different interpolations required for base point data; i.e.,
three linear interpolations at points (1,2), (1,3), and (2,3)
and bivariate interpolation at point 4. Interpolation or
extrapolation is also required in the direction of integration

if the solution is to be advanced on parallel planes.
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3. Bicharacteristic line networks

a. Tetrahedral bicharacteristic line network Another

direct scheme proposed by Thornhill (44) is the tetrahedral
bicharacteristic line network shown in Figure 1.5. In this
network, the solution point (5) is located at the mutual inter-
section of characteristic cones with vertices at the known
initial data points (1), (2), and (3). Lines (1) - (5), (2) -
(5), and (3) - (5) are straight line approximations of bi-
characteristics through point (5). The particle path (4) - (5)
is projected from the solution point back to the initial data
surface.

The main advantage of this scheme is that base points (1),
(2), and (3) remain fixed during the solution; thus no inter-
polation is required for the flow properties at these points.
However, interpolation is required at point (4). BA&n apparent
h all direct scaeies, 1s
that there is no direct control over the location of the solu-
tion noint. The major disadvantage of the scheme, however, is
that it is unstable due to violation of the CFL stability
criterion seen in Figure 1.5 where the differential domain of
dependence lies partially outside the convex hull of the dif-
ference scheme. This fact was discovered by Sauerwein (12) in
attempting to apply the technique to unsteady flow problems.
Fowell (10) developed numerical procedures based on this net-

work for analysis of supersonic flow over wing~body
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configurations. However, he made cnly a few hand calculations

with the method, and apparently did not discover the instabil-

ity of the method.

b. Modified tetrahedral bicharacteristic line network

Sauerwein (12) proposed a modified version of the tetrahedral
bicharacteristic line network in order to satisfy the CFL
stability criterion. In this network, sihown in Figure 1.6, a
triangle is drawn connecting initial data points (1), (2), and
(3). Points of tangency of the triangle and an inscribed
circle [points (1,2), (1,3), and (2,3)] are used as base points
for the tetrahedral bicharacteristic line network. Linear
interpolations along the sides of the triangle are used to
determine the flow properties at the base points. This scheme
satisfies the CFL criterion and was found to ke stable by
Sauerwein. This network closely resembles the tetrahedral
Characierisilc surface network and also shares the same

advantages and disadvantages.

c. Network cf intersections of streamlines and reference
planes Strom (J3) developed an indirect scheme, shown in

Figure 1.7, which he cecliled the network of intersections of
streamlines and reference planes. In the network construction,
the solution point (6) is located first by projecting the
streamline forward trom the initial data point (5). Four
equally spaced bicharacteristics are then projected from the

solution point back to the initial data surface. Bivariate
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Figure 1.8. Pentahedral bicharacteristic line network .



21

Al

interpolating polynomials fitted to point (5) and eight
neighboring points are used to determine the flow properties
at base points (1) - (4). The cross derivative terms in the
wave surface compatibility relations are ignored at the solu-
tion point. Multiple solutions are determined using sets of
three bicharacteristics with the results subsequently avefaged.

One advantage of this network, over previous inverse
schemes, is that streamlines are followed in the solution.
Streamline tracing is especially desirable in chemically
reacting flows. Also, according to Strom, the use of a single
bivariate interpolating polynomial for calculating each
dependent variable at all base points is desirable from the
standpoint of computational time required.

Strom (13) used this scheme to predict the three-
dimensional supersonic flow field over blunt conical bodies.'
Chiu et al. (45, 50; used a version of this scheme to solve a

number of three~dimensional supersonic flow problems.

(17) developed the pentahedral bicharacteristic line network
shown in Figure 1.8. In this scheme, second order accuracy is
clearly maintained. As originally proposed, the scheme
involves integration of the wave surface difference equations
over the infinite family of bicharacteristics passing through
a point. 1In practice, however, the integrals are replaced by

summations over four equally spaced bicharacteristics around
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the characteristic cone. The scheme is unique in that cross
derivatives are eliminated at the solution point. Butler
proposed an inverse scheme in which the solution point (6) is
fixed, and the bicharacteristics and particle path are pro-
jected back into the initial data surface. Base point fiow
properties are determined using bhivariate polynomials fitted
to known initial data points. Talbot (51) has applied this
method to unsteady shock-thermal layer interaction problems.
Also, Elliott (52) and Richardson (53) used this scheme with
modificaticns for solution of unsteady flow fields about
detonated cylindrical bodies.

Ransom et al. (14, 54, 55, 56) and Cline and Hoffman (57,
58) developed a modified version of Butler's scheme for solu-
tion of chemically reacting, supersonic nozzle flows. In this
scheme, streamlines are traced in the same manner as in the
network of intersections of streamlines and reference planes.
A degree of.freedom in the choice of the four bicharacteristics
was also introduced in this scheme. Good comparisons of numer-
ical solutions and experimental data are presented by Ransom
et al. (56) for supersonic flow in super-elliptical contour
nozzles. Cline and Hoffman (37) have made comparisons of the
pentahedral bicharacteristic line network and two inverse
versions of the tetrahedral bicharacteristic line network.
The pentahedral bicharacteristic line network was found to be

the best overall scheme in terms of accuracy and computation
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time required.

D. The Present Numerical Method for
Solution of Cascade Flows

The numerical method developed in this study for solution
of steady transonic flows in turbine cascades is based on the
method of characteristics for two-dimensional unsteady flow.
Steady cascade flows are computed as the asymptotic limit in
time of a transient solution.

The present method is based on the pentahedral bicharacter-
istic line network developed by Butler (17). Butler's scheme
was chosen because it is the only characteristic method in
which second=order accuracy is clearly maintained. Improve-
ments, some of which are due to Ransom (14), have been
incorporated into the scheme. For completeness, Butler's
general numerical method incorporating the infinite family of
bicharacteristics is developed in Appendix B. Supporting
material on the general theory of hyperbolic partial differ-
ential equations is included in Appendix A. The general

numerical method presented in Appendix B, although not

essential to the development of th

1 1 umerical scheme for two-

dimensional unsteady flow, has been included for the reader

interested in extending the method.
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II. CHARACTERISTIC RELATIONS

In this chapter the characteristic relations for plane
two-dimensional unsteady flow of an inviscid fluid are
developed. The characteristic pronerty used in these develop-
ments is that particular linear combinations of the equations
p-oduce interior differential operators, called compatibility
relations, on characteristic surfaces in the space formed by
the two physical space coordinates and the time axis. A
discussion of this characteristic property as applied to a
general hyperbolic system of first-order partial differential
equations is presented in Appendix A. For the comprehensive
theory of hyperbolic systems of partial differential equations
in three independent variables the reader is referred to

Courant and Hilkbert (59).

LR o — - AR D o
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The 2quations cof motion for unsteady adiabatic flow of an
inviscid fluid in two dimensions are the two Euler momentum

equations, the continuity equation.and the isentropic relation.
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where uy and u, are the velocity components along the Xy and X,
Cartesian coordinate directions, respectively, p is the static
pressure, p is static density, s is specific entropy and t is

time. Equation 2.4 states that entropy is conserved along a

particle path. From the definiticn cof accustic gpeed, a,
2 3
ac = 2 (2.5)
op s

an expression equivalent to Eg. 2.4 is
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plane; alsoc introduce the notaticn X3 = t. Any vector A; in
the space (xl, Xq0 x3) can be represented as the sum of two
vectors, one lying in the physical plane and the other directed

along the time axis, i.e.,
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The vector a, (lower case letter) is the physical component of

Ai' Let Ui = {ul, Uy 1}; then the physical component

u o= {ul, Us 0} is the velocity vector. With this notation,

the equations of motion, Egs. 2.1-2.3; and 2.6 in matrix form

are
- 6 N
PU; 0 1i 0 %
1
au
2
0 U, 524 0 T
1
=0
X BE
0095 PSoy 0 Ui 3%,
n N T ___2'" BD I~ "\
! v v U« a U_i. 'gr I \{Z.2)
L : L]

where the repeated indices imply summation over the range 1 to
3. (The elements of the coefficient matrix in Eq. 2.9 corre-

spond to the coefficients 301 in Eq. 10.1 of Appendix A.)
B. Characteristic Surfaces

Hyperbolic systems of partial differential equations in
three independent variables have the property that particular

iinear combinations of the equations yield relations involving
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differentiation in only two independent directions (see
Appendix A). These two independent directions locally define
a surface called a characteristic surface. A linear combina-
tion of the equations written on a characteristic surface is
called a compati’ iity relation.

The characte. istic surfaces for the system of equations,
Eq. 2.9 are obtained by solving for the left eigenvector which
will reduce the system of equations to an interior operator on
a surface. Multiplication of Eg. 2.9 by the left eigenvector

v v — 1T 9 2 A st AT AN L
W \H = .x.,a,.;,-:) yieLlusS Ul

I 1€ single equation
Bul au
r \ —_—
p(Ujwy + 8y5w,) mx, TP Uyt 8gyvy) 7%,
+ (8,.w, + 8,.w, + U.w,) P + (U.w, - aZU w,) % 0
1i71 2172 Ti 09X, i"3 i4 axi
(2.10)

The coefficients of the derivatives in
directional differentiation (wv in Eq. 10.6). Equation 2.10
reduces to an interior operator on a surface if the coefficient
vectors are coplanar, or equivalently, if the scalar products

of the coefficient vectors and a vector Ni normal to the

characteristic surface vanish, i.e.,

D(inl + Gliw3) N, = 0 (2.11)

p(Ugwy + §5us) N; = 0 ~ (2.12)
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(Gliwl + GZiw2 + in4) Ni (2.13)
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2
3 - a in4) Ny (2.14)

The physical component of the characteristic surface normal is

taken to be unity. Hence,

n,ng =.l (2.15)

The system c¢f equations, Egs. 2.11-2.14, provides four equa-
tions for the four components of the left eigenvector, WU' and

can be written in matrix form as

— j -
pUiNi 0 paliNi 0 Wy
0 pU Ni p62iNl 0 w2
=0 (7.16)
6]1 i 62iN1 0 U_Ni w3
2

0 0 U.N. -a“"U.N. tlw,
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A nontrivial solution for wu exists if the determinant of the
coefficient matrix in Egq. 2.16 vanishes. Expansion of the
determinant of the coefficient matrix yields the charactcz-

istic equation for the original system of equations, Eg. 2.9,

as
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(UiNi) x[uiuj a (ali alj + 8,y 52j)] NiNj} =0 (2.17)

The two distinct factors in Eq. 2.17 correspond to two dif-
ferent families of characteristic surfaces with normals Ni

(Appendix A).

1. Characteristic flow surfaces

Characteristic flow surface normals, Ny satisfy the
equation obtained by setting the first factor in Eg. 2.17 equal

to zero, i.e.,

U.N. =0 (2.18)

Equations 2.15 and 2.18 are two eguations for the three
components ¢l the normal NS The remaining condition needed
to determine Ni is arbitrary. Therefore, rather than a
uniquely determined normal, Ni' an infinite family of normals
exists.

Simultaneous solution of Egs. 2.15 and 2.18 yields the
locus of endpoints of the normals Ni' Equation 2.18 is the
equation of a plane passing through the origin (see Eq. 16.6
in Appendix G) whose orientation depends on the velocity
components at a point, and Eq. 2.15 is that of a cylinder of
unit radius whose axis lies along the X3 axis. Therefore, the
locus of endpoints of Ni is the elliptic curve of intersection
of the plane and cylinder shown in Figure 2.1. Since the

plane of normals passes through the origin, all normals are
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coplanar.

At a point in space there exists an infinite number of
characteristic flow surfaces corresponding to the infinite
family of normals Ni satisfying Eg. 2.18. The condition
expressed by Eq. 2.18 is that the normals Ni are orthogonal to
the vector Ui’ as shown in Figure 2.2. Therefore, all
characteristic flow surfaces contain Ui’ and the envelope of
these surfaces is a degenerate surface or a curve locally

tangent to U,. Let ds; = {ds,, ds

1’ 9 ds3} be a differential

element of this curve; then according to Egq. 2.18

dSiNi = dsini + N3dS3 =0 (2.19)

where ds, = {dSl, ds,. 0} is the physical component of s, .
If Eq. 2.19 is divided by dS3 and the resulting coefficients
of n, are set equal to the coefficients of n, in the expanded

form of Eg. 2.18, we get

_"‘l_ = Ll (2.20)
dS3
?E_Z_ = u {(z.21)
ds3 2

Elimination of dS3 from Egs. 2.20 and 2.21 gives
22 (2.22)
dS1 u,y )
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The condition expressed by Egs. 2.20, 2.21 and 2.22 is that
the vector dSi lies along the particle path. Thus, the
particie path, shown in Figure 2.2, is the envelope of the

infinite family of characteristic flow surfaces.

2. Characteristic wave surfaces

Normals Ni to characteristic wave surfaces satisfy the

vanishing of the second factor in Eg. 2.17, i.e.,

2

{Uin - a® (84 alj + 8, azj)} N;N; =0 (2.23)
Equation 2.23 is of the general form
AijNiNj =0 (Aij = Aji) (2.24)

which is the equation of a cone (cone of normals) with the
vectors Ni directed along the generators (see Appendix G).
Summation on repeated si 2.23 and i

eala mdom Ligqd 2 ~
. an sSuosScicucelor

of Eg. 2.15 yields a quadratic equation in U N, with roots
U.N;, = + a (2,25)

where the choice of the positive or negative root is arbitrary.
the sign in Eq. 2.25 ﬁerely fixes the direction of Ny along
the generators of the cone of normals.

The locus of endpoints of the characteristic wave
surface normals is determined by simultaneous solution of

Egs. 2.15 and 2.25. Equation 2.25 is the equation of a plane
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whose orientation in space depends on the magnitudes of the
velocity components and acoustic speed at a point. With the
normalization condition on the physical component of Ni' Eq.
2.15, the endpoints of N, lie on the elliptic curve of inter-
section of the plane, Egq. 2.25, and the unit cylinder, as
shown in Figure 2.3.

‘At any point in the (xl, Xo x3) space there exist an
infinite number of characteristic wave surfaces with normals
N, satisfying Eq. 2.23. This family of surfaces forms a
curved conical envelope which is called the characteristic
conoid. The conoid is locally tangent to the characteristic
cone wnhich is the reciprocal cone to the cone of normals.

Tangent loci of the characteristic wave surfaces and the

characteristic conoid are called bicharacteristics (see
Appendix A).

2

represented by the quadratic relation (Eg. 10.14 in Appendix A)
dx.,dx. = 0 (2.26)

The differential vectors dx, satisfying Eq.'2.26 are locally
tangent to the bicharacteristics and lie along the generators
of the characteristic cone. The coefficients AI% in Eq. 2.26
are obtained by constructing the matrix A with elements Ai.

from Eq. 2.24 and determining the inverse matrix A_l. After

considerable manipulation, the elements of A-l can be written
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in the form

_ 1 - - -
AL =5 {U.U. Ukukdij + (u,6 uzcsl.l) (U, 8, u,8..)

173 1721 1723 2°15

(=N

!
Uy o]

o

5 2
+ a 63i63j} ( 7)
Substitution of this result into Eq. 2.26 for A;% and summation

on repeated subscripts yields

. 2 _ 2 2.2
(dxl - uldx3) + (dx2 uzdx3) = a dx3 (2.28)

which is the equation of the real oblique cone shown in
Figure 2.4. The base of the cone in the plane dx3 = constant
is a circle of radius adx3 centered about the point {uldx3,
u,dx

2A% 4y dx3}. This cone is the sonic cone and represents the

local path of propagation of a disturbance generated at the

origin.
C. Compatibility Relations

The compatibility relation, Eq. 2.10, is an interior
operator on a characteristic surface and is determined by a
linear combinat the original system,
Eg. 2.9. For a particular characteristic surface, the
components of the left eigenvecter wu used in forming the
linear combination are determined from Eq. 2.16 with

appropriate conditions on the characteristic surface normal

N,. Since Eg. 2.16 is homogeneous, the left eigenvector is
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determined only to within an arbitrary scalar multiplier. The
number of independent solutions for wU is determined from the

rank of the coefficient matrix in Eq. 2.16.

l. Flow surfzce compatibility relations

The vectors Ni normal to a characteristic flow surface

satisfy Eq. 2.18. Thus Eq. 2.16 for this case reduces to

— T — -
0 0 le 0 wq
0 0 pN2 0 Wo
=0 (2.29)
Nl N2 0 0 Wa
0
LO 0 0 0_ Lw4—

The coefficient matrix in Eq. 2.29 is rank 2; therefore, two
linearly independent solutions for W exist for each flow
curface normal, yielding two. linearly independent compatibility
relations. From Eg. 2.29, W vanishes for both solutions, and
the value of W, is arpbitrary. The most obvious two independent
solutions for L are one with Wy finite and the remaining
components zero, and the other with w3 and Wy zero and Wir W,
satisfying the equation, wlNl + wyN, = 0. Since the system of
-equations Eg. 2.29 is homogeneous, we can write for the first

solution
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w, = {o, 0, 0, 1} (2.30)

For the seccond solution, if we let wy = Sl and wo = 82, where

s, = {Sl, 52’ 0} is normal to n, (AiSi = 0), then

w,o={s;, 8,, 0, 0} (2.31)

The vector S5 lies in the characteristic flow surface and is
directed along the curve of intersecticn of the surface with
the physical plane, as shown in Figure 2.2,

| The compatibility relations corresponding to the left
eigenvectors W Egs. 2.30 and 2.31, are obtained by forming
the coefficient vectors of the derivatives in Egq. 2.10 or by
taking the linear combination of the equations of the original
system, Eq. 2.9, with multipliers equal to the components of
W Hence, the compatibility relation associated with the
eigenvector given by Eq. 2.30 is simply the last equation of
the original system, Eq. 2.6. In directional differential

notation, this eguation is written as

_ 2. . _ '
gPp —adye =0 (2.32)

L2 T L. P I T TT mi
LLICLIT pauit uilolTulull, Uio Lue

compatibility relation corresponding to the eigenvector given

by Eq. 2.31 is

Bul au2 3
0] SlUl é*}q + p SzUi -a-;{: + Si —R—axl =0 (2.33)
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or, in directional differential notation

~ |

o sluUul +p Sszu2 + dSP = 0 (2.34)

where s denotes the s direction. Equation 2.32 involves
differentiation in a single direction, U, while Eqg. 2.34

involves differentiation in two independent directions, Uy and

S..
1

2. Wave surface compatibility relations

The vectors N, normal to characteristic wave surfaces

satisfy Eg. 2.25, i.e.

UiNi = -a (2.35)

where the negative root is arbitrarily chosen. In this case,

Eq. 2.16 reduces to

- _ N T— P T
pa 0 le 0 Wy
0 ~-0a pN2 0 w2
=0 {2.36)
Nl N, 0 -a w2
0 e - 3 v
a a-l L_“4

The coefficient matrix in Eg. 2.36 is rank 3; therefore, only
one solution for WU exists for each wave surface normal Ni’

If we let Wy = 1, then solution for the remaining components

wp in Egq. 2.36 gives
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2
W, = {aNl, aN,, a“, 1} (2.37)

The wave surface compatibility relation from Eg. 2.10 then

becomes
Bul Buz
) I
+ (aNl 1i + aN262i + Ui) axi 0 (2.38)

The fact that this equation involves directional derivatives
within the wave surface can be verified by taking scalar
products of the coefficient vectors of the derivatives and the
wave surface normal Ni' With incorporation of Eé.-2.35 these
scalar products vanish, ensuring that Eg. 2.38 can be rewritten
in terms of derivatives in only two independent directions.
Equation 2.38 can be rewritten in terms of directional
derivatives in two arbitrary independent directions in a
characteristic wave surface. For the two directions we choose
first, as shown in Figure 2.4, the bicharacteristic direction,

locally tangent to the vector Li’

T - 17 L s
A i @ Qli

i i i

~~
[\
°
(&%)

~

and second the direction m

50615 S5 = 8y 694) (2.40)
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locally tangent to the intersection of the characteristic wave
surface and the physical plane. Note that the scalar products
of the vectors Li and m. with the wave surface normal Ni
vanish, and that the vectors n, and m, are orthogonal.

Equation 2.38 can be rewritten in a more compact form as

oJu.
5 5
pa(njui + aGij) ﬁf + (U; + any) 5-% = 0 (2.41)

where the subscripts on sij take values 1 and 2, only. If the

Ju.

term pazn.n. §§l is added to and subtracted from Eg. 2.41, then
i

J 1

Ju. ou.
1 9p_ 2 - -
panj(Ui + ani) Bxi + (Ui + ani) = + pa (Gij n.n.) : 0

(2.42)

The first two terms of Eq. 2.42 involve differentiation in the
bicnaracteristic direction, Li. After considerable algebraic

manipulation, the product mimj, according to Eg. 2.40, can be

m.m., = 6. s 7 njn\ ‘ (2043)

Hence, the wave surface compatibility relation, Eq. 2.42, can

be written as

ou, ou.
1 p_ 2 —d =
panj(Ui + ani) axl + (Ui + ani) Bxi + pa mjmi 3%, 0 (2.44)
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or, in directional differential notation, as

panj dLuj + de + pazmj dmuj =0 (2.45)

where L and m denote the bicharacteristic Li and the my

directions, respectively.
D. Interdependence of the Compatibility Relations

There exicts a double infinity of compatibility relations
at a point in space written on two infinite families of -
characteristic surfaces. Since any compatibility relation is
a linear combination of the four equations of motion in Eq.
2.9, the maximum number of independent compatibility relations
is four. Also, in forming a complete set of compatibility
relation;, a minimum of four relations must be considered.
Many combinations of four compatibility relations can be
formed. However, the interdependence of these combinations
must be examined in order to obtain a complete set of
independent relations.

To examine the interdependence of any set of four
compatibility relations, it is necessary to write out the

matrix

wi = {wi, wl, wi wg} (j =1,2,3,4) (2.46)

whose rows are the left eigenvectors associated with the

particular compatibility relations considered. The number of
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linearly independent compatibility relations is equal to the
rank of the matrix described by Eq. 2.46. The rows of the
matrix yielding the highest order nonzero determinant show
which compatibility relations are independent.

In order to determine the maximum number of linéarly
independent wave surface compatibility relations of the form

of Eq. 2.45, we determine the rank of the matrix

wa = {aNJ, aN%, a2, 1} (§ =1,2,3,4) (2.47)

whose rows are the left eigenvectors given by Eg. 2.37 for four
different wave surface normals, Ni (3 =1,2,3,4). Since the
last twe columns of this matrix are dependent, the rank is at

most three; therefore, we examine the reduced matrix

[ 1 2]
aNl aN2 a
2 2 2 ,
aNl aNz a 12.43)
3 3 2
LaNl aN2 a _

If the rows of this matrix are dependent, then the endpoints of
(n,

3 . = {N,, N,, 0}) lie on a straight line

" the vectors n: "
L L L P4

(i.e., the two difference vectors obtained by subtracting two
rows of the matrix from the remaining row are collinear).
However, from Eqg. 2.15, the endpoints of ng lie on a circle of

unit radius. Therefore, the rows of the matrix are independent

and three linearly independent wave surface compatibility



relations exist.

Since only three wave surface compatibility relations are
independent, a complete set of four equations must include at
least oi.e flow surface relation. The particle path relation,
Eg. 2.32, is the only compatibility relation involving deriva-
tives of the density, p. Hence, Eq. 2.32 is independent of the
other relations and must be included in any complete set of
compatibility relations.

It is now clear that a complete systém of four compati-
bility relations can be formed from three wave surface rela-
tions and.the particle path relation. This particular
combination of compatibility relations is of interest in the
development of the numerical integration scheme to be
discussed in Chapter III. Other combinations of the compati-
bility relations can be used to form complete systems of

equations. For a discussion of these combinations see Delaney

and Kavanagh (60).
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III. SECOND-ORDER NUMERICAL

INTEGRATION SCHEME
A. General

Second-order accuracy is not easily achieved in the
application of the method of characteristics to the numerical
integration of hyperbolic systems of partial differential
equations in three independent variables. That this is the
case is because the compatibility relations, in general,
involve differentiations in two independent directions on the
characteristic surfaces. Thus, second-order finite-difference
approximations to the cbmpatibility relations, obtained by
differencing along network lines in the numerical integration
network, inherently contain cross-derivative terms at the

solution point. Evaluation of these terms to maintain second-

cava < ~1
order accuracy necessarily invol

the entire solution surface is calculated a' number of times,
with cross-derivatives at the solution points upcatad after
each iteration. The usual approach, however, as stated
previously in the discussion of the characteristic numerical
integration networks in Chapter I, has been to neglect the
crcss-derivatives at the solution point and to accept the
attendant decrease in accuracy.

Second-order accuracy is maintained in Butler's scheme

(17) by elimination of cross-derivatives at the solution point.
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In the original scheme proposed by Butler, the infinite family
of bicharacteristics 1s employed and the cross-derivatives
eliminated by weighted integration of the wave surface
compatibility relations around the differential domain of
dependence (Appendix B). In practical application, however,
four wave surface compatibility relations corresponding to
four equally spaced bicharacteristics are used in combination
with the particle path compatibility relation and a non-
characteristic relaticn. In the system of difference relations,
the cross-derivatives at the solution point appear in two terms
common to all the equations. The cross-derivatives are
eliminated by taking appropriate linear combinations of the
equations.

In this chapter, numerical solution procedures are
developed for two-dimensional unsteady flow based on Butler's
me thcd. he development cinsely parallele that given by
Ransom (l14) for three-dimensional steady supersonic flow.

Frequent reference is also made to the general numerical method

contained in Appendix B.

In the numerical scheme, the bicharacteristic direction is
parameterized by introducing the following representation for

the physical component of the wave surface normal vector:
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n, = cosf oy * sind B, (i = 1,2) (3.1)

where oy and Bi are orthonormal reference vectors lying in the
physical plane at the vertex of the characteristic conoid. 1In
Eg. 3.1, the parameter 0 is the polar angle measured from the
oy direction, as shown in Figure 3.1. The angle 6 has the
range 0 < 6 < 2m. With this form for n, the generators of the

sonic cone lie along the directions (see Eq. 2.39)
Li =U; +a cos6 a; + 3 sinf Bi (1 =1,2,3) (3.2)

where the vector Uy is locally tangent to the particle path,
and a is the local acoustic speed. The parametric representa-
tion of a differential element of a bicharacteristic curve is

thus

dxi = (Ui + a cosh o + a sin® Bi) dt (3.3)
(1=1,2,3)

where t is the time of travel of a disturbance along the
bicharacteristic. The equation of a differential element of

the particle path is found from Eq. 3.3 with the last two terms

set equal to zero, i.e.,

dxi = Uidt (i =1,2,3) (3.4)

Equation 3.3 is the parametric representation of the bi-

characteristics proposed by Butler. Butler fixed the
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directions of a; and Bi along the Xyr X, coordinate axes,
respectively, and allowed 6 to vary along the bicharacteristics.
The approach used here, however, is that due to Ransom in which
the degree of freedom in the rotation of the reference vectors
o B {the angle ¥ in ¥Figure 3.1) is used to maintain 8
constant along the bicharacteristics. Ransom's approach

results in a significant simplification of the numerical solu-
tion procedures.

The particular choice of Ujr O and Bi as reference
vectors in the bicharacteristic parameterization, Eq. 3.3,
ensures that the quadric equation of the differential conoid,
Eq. 2.26, is satisfied. The conditions which must be satisfied
by the reference vectors correspond to Egs. 11.4 and 11.5 in
Appendix B with Ai =U.,, Uy = acg, and v, = asi. With these

1

stbstitutions, Egs. 11.4 and 11.5 yield

-1 -1 -1 _

Aij UiOLj - Aij lJiBj - Aijaisj - 0 (3&5)
and

-1 2 -1 .2 -1 .

. -1 . . . .
where the coefficients Aig are given by Eg. 2.27. Substitution

of AZ% from Eq. 2.27 into Egs. 3.5 and 3.6 with a, and B,

written as
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o, = cosy 8,, + siny §, (3.7)

i
B. = -siny Gli + cosy 52i , (3.8)

where ¥ is the angle between o and the 3 axis, shows that
Egqs. 3.5 and 3.6 are satisfied.

One other condition must be satisfied by the reference
vectors to ensure that the curve obtained by integrating Eq.
3.3 for a particular value of 6 is the tangent locus between
the characteristic wave surface and the characteristic conoid
(i.e., the definition of the bicharacteristic). This condition
is called the "bicharacteristic tangency condition" and is

obtained from the genefal form, Eg. 11.15, with substitution

from Egs. 2.27, 3.7 and 3.8. The result is

@
tad

(3%
o
——~
(%)

\O
~—

<2
<0

Equation 3.9 is used to determine the orientation of a; and Bi
at any point along a bicharacteristic relative to a fixed
reference at the vertex of the conoid.

ation, Eq.l2.44, can
now be written in terms of the bicharacteristic parameter 6.
If the orthonormal properties of thelvectors m. and n, are

employed, m; can be expressed as

m, = = sinbo; + cos6B, (i =1,2) (3.10)
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Substitution of Egs. 3.1 and 3.10 into Eg. 2.44 for n, and m
and utilization of the definition of the directional differ-

ential‘along the bicharacteristic direction yields the relation

d + a (cos® o. + sinb B.) d.u.
P toe ( oy + sin 83) 193

= =-p a2 (-sinb aj + ccsh Bj)(-sine oy + cosb Bi) ~—4 dt

(3.11)

where the subscript L denotes the bicharacteristic direction.
This particular form of the wave surface compatibility relation
has the property that when written for 6 = 0, n/2, =, and 31/2,
the derivatives of the dependent variables on the right-hand

side of the equation appear in either one of the two groups of

u., Ju.
—d — » ;
terms, ajai axi or BjBi axi . The fact that Eq. 3.1l has this

property is used in the numerical solution to eliminate the

cross-derivative terms at the solution point.

C. Difference Network

1o 1.

1Cn

he difference network {pentahedral racteristic line
network) consists of four equally spaced bicharacteristics
corresponding to 6 = 0, /2, m, and 3m/2 and the particle path.

As shown in Figure 3.2, a completely inverted scheme is used

in which the solution point (£} is fixed in the new time plane,
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domain of dependence and grid point cell

Figure 3.2. Interior or field point network
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and the bicharacteristics and particle path are projected back
to the initial data plane. Base points (1), (2), (3), and (4)
lie at the intersections of the bicharacteristics corresponding
to 8 = 0, /2, 7w, and 3n/2, respectively, and the initial data
plane. Point (5) is the intersection of the particle path and
the initial data plane.

Base points are located by employing the finite-difference
form of the appropriate direction equations. The finite-
difference form of the particle path equation, Eq. 3.4, using

the modified Euler scheme (ref. 61), is

x; (5) = x, (6) - g{ui(6) + ui(S)} At (1 =1,2) (3.12)

where the numbers in parentheses denote evaluation of the
vuariables at corresponding points in the difference network,
and At is the time increment between the initial data plane
and the solullon point, point (6). Similarly, the coordinates

of points {1) through (4) are found from Eg. 3.3 written as
Xi(k) = xi(s) - g{ui(G) + a(6) cos6 (k) ai(6)
+ a(6) sinb (k) 85(6) + ui(k) + a(k) cosb (k) ai(k)
4+ a(k) sind (k) 3. ()} ot (i = 1,2) (3.13)

where k takes values 1, 2, 3, and 4. 1Initial estimates for the
values of the dependent variables at points (1) through (6}

appearing in Egs. 3.12 and 3.13 are taken as those at solution
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point on the initial data surface.

The reference vectors Gy Bi which appear in Eg. 3.13 must
be established at point (6) and at the base points (1), (2),
(3), and (4). The bicharacteristic tangency condition, Eq.
3.9, is used to establish the reference vectors ai(k) and Bi(k)
(k = 1,2,3,4), relative to the fixed reference at point (6).
Because of the length, the development of the finite-difference
form of this condition is omitted here, but has been included
in Appendix C. The results for the tangency condition are the
following two equations for the components of ui(k) (k = 1,2,

3,4) obtained from Egs. 12.35 and 12.36:

ay (k) = D(6) B,(6) At + a(6) [1 - D2(p) at?1%  (3.14)
o, (k) = D(6) B,(6) bt + ay(6) [1 - D2(e) at21%  (3.15)
where
D(8) = [ai(6) cosb + Bi(G) sinb ]
Bui(6)

X [Bj(G) cosf - uj(6) sinb] ij
+ [Bj(G) cosf - aj(G) sind} é%ﬁgl (3.16)

]

and where 9 takes values 0, /2, m, and 3nw/2 corresponding to

Bui(G)

9xX.
J

k=1,2,3, and 4, respectively. The derivatives and
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i%%ﬁl appearing in Eqg. 3.16 are computed to sufficient order

J
of accuracy at the solution point (6) location on the initial

da(6)

data surface (see Appendix C). The derivatives ™

are

evaluated in terms of derivatives of pressure and density from

the property relation, in functional form,

a = alp,p) (3.17)

Differentiation of Eq. 3.17 according to the chain rule yields

(o
o)
(@)
~
fo %

_ 0%a 9dp(s) + %% 398}£6) (3.18)
i

)|
%

el
Q)
»

Following the solution for ai(k), the components Bi(k) are
determined using the orthonormal properties of the reference

vectors oy and Bi, i.e.,

1}
o
-

1

o (k)8 ; (k) 1,2) (3.19)

1]
H
=

il

Bi(k)Bi(k) 1,2) (3.20)

Equations 3.19 and 3.20 provide two conditions for the two

components of Bi(k}.

Once the base points (1) through (5) have been located,
the dependent variables at these points are determined using
bivariate interpolations on the initial data surface. For this
purpose, second-order polynomials are fitted by the method of

least squares to a nine-point cell consisting of the sclution
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point and eight neighboring points.
D. System of Difference Equations

The system of differential equations, which is the basis
of the finite-difference integration scheme, consists of four
wave surface compatibility relations, Eg. 3.11 written for
& = 0, n/2, m, and 3n/2, the particle path compatibility
relation, Eq. 2.3Z, and a non-characteristic relation. From
the previous discussion on the interdependence of compatibility
relations in Section II.D, this system of six equations would
.appear to be overdetermined. However, in the numerical integra-
tion scheme the differential relations are replaced by finite-
difference equations in which two terms involving derivatives
of the velocity components at the solution point are treated
as additional unknowns. Thus, in forming the difference
equations from the differentizal relaticons, the order of the
system is increased from four to six, and the resulting dif-
ference equations form a complete set of six eguations.

The noncharacteristic relation involved in the system of
difference equations is obtained by eliminating the derivatives
of density from the continuity equation, Egq. 2.3, and the
isentropic relation, Eq. 2.6, the result being

5 aul ou

2 -
dUp + pa (§§T + 5;5» dt = 0 (3.21)



where U denotes the particle path direction, Ui' Equation
3.21 can be written in an equivalent form involving the

reference vectors e, Bi as

ou.

2 \ ] =
dzp + pa (ujui + BjBi) axi dt = 0 (3.22)

This noncharacteristic relation is used to eliminate the terms

du. (6) du, (6)
ajai axi and BjBi ——%;7— which appear in the system of

difference equations.

The system of difference equations is obtained by writing
the differential relations in Egs. 2.32, 3.11 and 3.22 in
finite-difference form using the modified Euler scheme. The
wave surface compatibility relation, Eq. 3.11, is written in

finite-difference form along the bicharacteristic direction as

2[p(6) - plk)] + {p(6) a(6)[cosb (k) a.(6) + sinb (k) B;(6)]

P-

+ p(k) a(k) [cosB (k) ai(k) + sind (k) Bi(k)]}fLi(G

~—

- u, (k

)
i

2
]

~{p(6) a®(6)[-sind (k) @y (6) + cosd(k) By (6))[-sint (6) o (6)

Ju. (6) 2
cos8 (k) 8;(6)] —— + p(k) a®(k) [-sind(k) oy (k)
1

4~

3u, (k)
cosf (k) B4 (k)1 [-sind(k) o; (k) + cos8 (k) 8;k)] —r—lat
1

+

(3.23)
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where k (k = 1,2,3,4) denotes the base point at the inter-
section of the bicharacteristic and fhe initial data plane.
With suvbstitution of 6(k) values of 0, 7/2, 7, and 37/2 into
Eq. 3.23 and rearrangement to put unknowns at point (6) on the
left side of the equation, we obtain the following four wave

surface compatibility relations:
2 p(6) + [p(6) a(6) a1(6) + p(1) a(l) al(l)] ul(6)
+ [p(6) a(6) a,(6) + p(l) a(l) ay(1)] uy(6)

2 du, (6)
+ p(6) a“(6) Bj(G) Bi(G) —5%1—— At

= 2 p(l) + [p(6) a(6) ay(6) + p(1) a(l) a,;(1)] u,;(1)

+

[p(6) a(6) a2(6) + p(l) a{l) “2(1)] u2(l)

2 buy (1) Buy (1)
- p(1) a"(1) {Bl(l)[Bl(l) Bxl + 82(1) 8X2 ]
Suz(l) du, (1)
+ 82(1) {Bl(l) S + 82(1) —r]} At (3.24)

1 2
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2 pi6) + [p(6) a(6) 81(6) + p(2) a(2) 81(2)] ul(6)
+ [0(6) al6) B,(6) + p(2) a(2) B,(2)] u,l(6)

ou. (6)

2
+ 0(6) a"(6) ay(6) ay(6) —I— At

1

= 2p(2) + [p(6) a(6) B,(6) + p(2) a(2) R (2)] uy(2)

+ [p(6) a(6) B,(6) + p(2) a(2) 82(2)] u2(2)
au, (2) du. (2)
2 1 1
- p(2) a®(2) {al(2) [al(z) axl + a2(2) 7%, 1
au2(2) 8u2(2)
+ 0,(2) [a;(2) ) + 0, (2) 7%, 1} At (3.25)

2 p(6) = [p(6) al6) qy(6) + p(3) a(3) ay(3)1 uy(6)

- [p(6) a(6) a,(6) + p(3) a(3) a,(3)] u,(6)

du. (6)

. 2 ¢
+ p(6) a” (o) Sj\6) B,(6) —y

At
i

= 2 p(3) - [p(6) al(6) ay(6) + p(3) a(3) ay(3)] uy(3)

1 ¢

lplb) aio) OLZW) + pt3) ald) 062\5)1 uz\d)

2 Bul(3) 8u1(3)
- p(3) a”(3) {31(3) [81(3) S + 82(3) —'gx——'-]
1 2
8u2(3) 3u2(3)
-+ 82(3) [81(3) BT + 82(3) —5;{—-——]} At (3.26)
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2 p(6) - [p(6) a(b) 81(6) + p(4) a(4) 81(4)] ul(6)
- [p(6) a(6) 82(6) + p(4) a(4d) 62(4)] u2(6)

2 du. (6)
+p(6) 2%(6) a (6) oy (6) —5%2—— At

2 p(4) = [p(6) a(6) By(6) + p(4) a(4) B, (4)] u, (4)

[o(6) a(6) 82(6) + p(4) a(4) 82(4)] u2(4)

ou, (4) ou, (
al * o0, 4) al
X X3

4)

- 0(4) a®(4) o) (4) oy (4) ]

9u2(4) 3u2(4)
u2(4) [al(4) — t a2(4) —gi_—_]} At (3.27)

1 2

+

The finite~difference form of the noncharacteristic relation,
Eq. 3.22, written along the particle path with unknowns at
point (6) on the left side of the equation is

2 du. (6)

2 p(6) + 0(6) a”(6) u.(6) o, (6) —d— At
1

du. (6)

(6) 8,(6) B, (6) —i— bt

1

+ p(6) a2

duy (5)  Bu,(5)

= 2 p(5) - p(5) a%(5) [ ] (3.28)

= +
xl sz



60

Examination of Egs. 3.24-3.28 reveals a total of five unknowns

Ju. (6)
considered: p(6), u;(6), u,(6), p(6)a2(6)6j(6)8i(6) — o,
2 du. (6)
p(6)a (6)aj(6)ai(6) —3%7—— At. Therefore Egs. 3.24-3.28
1

comprise a complete system of five nonlinear difference
equations for the five unknowns. The system of equations is

displayed below as a matrix equation with an abbreviated nota-

tion for the coefficients:

- 4 - -

2 B, C; 0 1/[p(6) F)

2 B, Cy 1 0f]uy(6) F,

2 By C3 0 1pju,(6) =| Fj
2 du. (6)

2 By C4 1 0||0(6) a%(6) aj(6) o;(6) mz— bt| | Fy
5 an, {6

2.0 0 1 1lfo(s) a®(6) B4(6) B, (6) '3%2“ at| | 7,

L - L L -

(3.29)
The last two unknowns, involving cross-derivatives of the
velocity components at the solution point. are of no interest
in the solution. These two terms are eliminated by taking
appropriate linear combinations of the equations in Eq. 3.29,

with the result
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0 B,-B, ety | [pe) | |ry-ry

0 B,-B, c,-C, uy (6)|=|F,-F,

4 B,+B,+B3+B, Cl+C2+C3+C4 u2(6) Fl+F2+F3+F4—2Fi}
{3.30)

Solution for the primative variakles ul(6), u2(6), and p(6) is
easily obtained from Eg. 3.30.

Finally, the density, p(6), is determined from the particle
path compatibility relation, Eg. 2.32, which when put into

finite-difference form and solved for p(6) is

0(6) = 2[p(6) - p(5)1/[a%(6) + a%(5)] + p(5)  (3.31)

where the acoustic speed, a, is determined from Eq. 3.17.
E. Iteration Scheme

A predictor-corrector iterative scheme is used in the
numerical sclution. In the predictor step, the solution at
point (6) 1is computed using estimates for the unknowns which
appear in the coefficients of the difference equations. For
this purpose, the values of the dependent variables at all
points in the difference network are assigned the values at the
solution point on the initial data surface. Subsequently, the
solution is corrected using the predicted values of the

dependent variables at point (6) and interpolated values of the

dependent variables at the base points (1) through (5) in the
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difference equations. The corrector step is repeated until
successive values of the dependent variables at point (6)
agree to within a specified tolerance. This technique yields

a solution in which the local truncation error is third order
in time step.

The reference vectors ai(k), Bi(k) (k = 1,2,3,4) are
determined relative to their assumed orientation at point (6)
from Egs. 3.14-3.20. ©Note that these relations do not depend
on data at points in the difference network but are solely
functions of the dependent variables and their derivatives at
the solution point on the initial data surface. Hence, the
reference vector calculations are performed first in the
numerical algorithm and are not involved in the iterative part
of the solution.

In each iteration step, the base points (1) through (5)
are 1ocated neing the direction e

The values of the dependent variables, Ujr Uys P and p and the

aul Bul au2 Buz
derivatives ’ ’ ; and =—— at the base points in the
axl sz Bxl axz

initial data plane, as needed in the difference equations,
Egqs. 3.24-3.28, are then evaluated using bivariate interpola-
tions (Appendix H). Finally, the values of the dependent

variables ul(6), u2(6), p(6), and p(6) are obtained from Egs.

3,30 and 3. 31.
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F. Accuracy Studies

Studies were undertaken to determine the order of accuracy
of the numerical method. Since rigorous analytical methods do
not exist for determining the order of nonlinear difference
schemes, the order ¢f the truncation error and, hence, the
order of accuracy of the method was estimated numerically.

The truncation error order was estimated by comparing the
results of the method at different time increments with exact
solutione for: (1) steady source flow, and (2) Prandtl-Mey
flow over a cylinder. Since these flows were steady, any
change in the transient solution with time was attributed to
round-off and truncation errors. To minimize round-off error,
all check cases were computed to 16 significant digits.

In setting up the transient solution, a square cell of
nine points was constructed in the flow field with the solution
point at the midpoint of the cell. The grid spacing was
determined by using the smallest spacing allowed by the Courant-
Friedrichs-Lewy stability criterion for a given time increment
(see Appendix D). The dependent variables at the cell points
on the initial data surface were determined from the exact
solutions for steady source flow and Prandtl-Meyer flow over a
cylinder presented in Appendix E.

The order of the truncation error was determined by

doubling the time increment and comparing the ratio of the
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time increments raised to the assumed order of the method. The
local truncation error in the numerical method was assumed to
be third-order in time step; thus, if the time increment were
doubled, the theoretical truncation error would grow by a
factor of 8. The process of doubling the time increment is
shown schematically in Figures 3.3 and 3.4 for the source flow

and Prandtl-Meyer flow, respectively, where the cell points and

increments.

‘1. Source flow accuracy study

In the source £flow accuracy study, the Mach number along
the upstream circular arc with radius ry in Figure 3.3 was
Ml = 1.2, and the solution point was located as shown at r/rl =
1.25. The results of the study are presented in Table 3.1 in
terms of percent errcr and relative error in the static
pressure for three time increments. The results indicate that
the order of the method is greater than the assumed second-
order. Similar results were obtained for different orienta-

tions of the initial data cell in the flow field obtained by

accuracy compared to that assumed in the method is due to the

relatively small property gradients which exist in this one-

dimensional flow case.
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Figure 3.3. Steady source flow accuracy study

Different time increments showing grid point
cell, differential domain of dependence, and
upstream reference station, rl. Ml = 1.2;
solution point location, r/rl = 1.25

Table 3.1. Results of steady source flow accuracy study

Case (1) (2) (3)
Relative time increment 1 2 4
Error in static pressure (%) 0.0023 0.0331 0.6440
Relative error (ratio to case 1) 1 14.53 283.02

Theoretical relative error 1 8 64
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Figure 3.4. Prandtl-Meyer flow accuracy study

Different time increments showing grid point
cell, differential domain of dependence, and

cylinder surface. Ml = 1.2, ¢l = 3n/4;

solution point location, r/rl =1.25, ¢ = /2

Table 3.2. Results of Prandtl-Meyer flow accuracy study

Case (1) (2) (3)
Relative time increment 1 2 4
Error in static pressure (%) 0.0404 0.3213 5.4021
Relative error (ratio to case 1) 1 7.96 64.91

Theoretical relative error 1 8.00 64.00
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2. Prandtl-Meyer flow accuracy study

Prandtl-Meyer flows have highly two-dimensional spatial
character and, hence, provide a more severe test than source
flows regarding the accuracy of the numerical method.

In the accuracy study fcr Prandtl-Meyer flow over a
cylinder, the Mach number at an upstream reference point (1)
on the cylinder with polar angle ¢ = 3n/4 was My = 1.2 (see
Appendix E for a description of reference point (1) location).
The solution point was located, as shown in Figure 3.4, at
r/rl = 1.25, ¢ = n/2, where ry is the radius of the cylinder.
The results of the accuracy study are presented in Table 3.2.
In this example, the results indicate third-order truncation
error. Again, cbmparable results were obtained with the
initial data cell rotated to various positions in the flow

field about the solution point.
G. Numerical Stability Studies

In the numerical solution of hyperbolic systems of
partial differential equations, the possibility of numerical
instability always exists. Numerical instability refers to
the unbounded growth of errors in the numerical solution. In
Appendix D, two stability criterion; (1) the Courant-Friedrichs-

Lewy criterion, and (2) the von Neumann criterion are applied

to the numerical method.
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The Courant-Friedrichs-Lewy (CFL) stability criterion
states that the differential domain of dependence must lie
within the convex hull of the difference scheme. 1In the
present scheme; the convex hull is the outer boundary of the
nine point cell, shown in Figure 3.2, used for interpolation -
in the initial data plane. The CFL criterion limits the
maximum allowable time step which can be taken between solutiom

planes and is a necessary condition for stability which must be

satisfied at all solution points.

oy e~

The numerical scheme was found to be stable by the
von Neumann criterion which states that a numerical scheme is
stable only if there is a finite limit to the amplification of
any Fourier component of the initial data. This condition

requires that the spectral radii, p(A), of the amplification

matrix, A, for the difference equations satisfy the inequality
p{A) < 1 + 0(At) (3.32)

for all possible combinations of Fourier components of the
initial data. The von Neumann criterion is a sufficient
condition for stability of linear difference equations. For
-the case of nonlinear difference equations, the sufficiency of
this condition is not guaranteed; however, the approach taken

is to linearize the equations and to apply the same criterion

locally.
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IV. CASCADE BOUNDARY POINT NUMERICAL PROCEDURES
A. General

Developed next are the numerical procedures for calcula-
tion at boundary points in the solution of cascade flows.

These procedures, used for solution at biade surface boundary
points, upstream boundary points, downstream boundary points
and blade trailing-edge points, are special adaptations of the
interior point calculation developed in Chapter III. In the
following discussions, a basic understanding of cascade
geometry and aerodynamics on the part of the reader is assumed;
see Glassman (62).

The cascade configuration of interest consists of an
infinite number of blades. Identical flow fields exist in each
blade passage, and the flows upstream and downstream of the
cascade are periodic with a
Accordingly, the cascade flow problem is solved by considering
the flow through one blade passage with periodic flow boundary
conditions imposed upstream and downstream of the cascade.

The cascade solution grid, shown in Figure 4.1, consists
of uniformly spaced parallel panels of grid points in the Xy
direption. The bounding panels A-B upstream and G-H down-
.stream are located sufficiently far from the cascade that uni-
form distributions of flow properties along these boundaries
.may be assumed. The spacing of panels is selected such that

the leading and trailing edge planes of the cascade, C-D and
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Cascade solution grid

Figure 4.1.
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E-F, respectively, are constant-x, panels. Points C and D in

' Figure 4.1 are points of tangency of the blade profiles and the
cascade leading edge‘plane; points E and F are the inter-
sections of the blade mean camber line and the trailing edge
plane of the cascade. Uniform spacing of grid points along
constant—xl panels is assumed between bounding constant-x9
panels A-C, B-D upstream and F-H, E-G downstream, and between
the blade surfaces inside the blade passage.

The boundary point calculation}schemes were developed with
the cbjective of modeling the transient phenomena for develop-
ing flow in cascades. The inviscid fluid assumption is used
in bedy point calculations at point§ on the blade profile,
i.e., the flow is assumed tangent to the blade surface. In the
upstream boundary point calculation, specification of the

stagnation state and u, velocity component (whirl) distribution
along the boundary A-B in Figqure 4.1 ig agsumed. Thig calcula-
tion can be applied to either subsonic inlet flow, or super-
sonic inlet flow with subsonic axial velocity component, uy .

In the downstream boundary point calculation, the static
pressure distribution along the boundary G-H in Figure 4.1 is
assumed known. This condition sets the flow through the cascade
analogous to the physical situation in which a throttle valve
is positioned downstream of the cascade. The blade trailing
edge point calculation.is applied at points E and F in Figure
4.1 and, as described later, is based on an approximate model

of the blade wake.
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The cascade flow periodicity requirement for points up-
stream and downstream of the cascade is enforced along the
constant—x2 panels A-C, B-D, E-G, and F-H in Figure 4.1.
Calculations at grid points along these panels ({(excluding the
endpoints) employ the interior point scheme developed in
Chapter III. The periodic flow condition, however, requires
special treatment of the grid point cells used for initial data
interpolations; discussion of these cells is deferred until
Chapter V where the overall solution algorithm is presented.

in all the boundary point calculation schemes, the differ-
ential domain of dependence lies partially outside the solution
space with at least one of the bicharacteristics in the usual
interior point scheme missing. This results in fewer compati-
bility relations available for solution for the dependent
variables Uyr Uy, P and p at the boundary points. Solutions

a

at ~h ary points are chrained, therefore, hy o

menting the compatibility relations with the specitfied boundary
conditions and orienting the reference vectors Ny Bi at the
solution point to position particular bicharacteristics in the
solution space.

In the following discussions of the boundary point schemes,
only the solution of the compatibility relations and the non-
characteristic relation for the dependent variables Uys Uy, Py

and p is covered. Base points are located in the same manner

as the interior point scheme using the particle path direction
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equation, Eq. 3.12, and the appropriate forms of the bi-
characteristic direction equation, Eg. 3.13. Also reference
vectors ey Bi at bicharacteristic base points are determined
from Egs. 3.14-3.20. The characteristic network point
numbering system is the same as in the interior point scheme
with bicharacteristic base points (1), (2), (3), and (4)
corresponding to the parameterizations 6 = 0, n/2, m, and 371/2,
respectively; the particle path base point is again point (5),
and the solution point is point (6).

Finally, the perfect gas assumption was used in the
development of the upstream boundary point calculation. This
assumption was not needed in the development ¢f the remaining
boundary point calculations. However, in the actual cascade

fleowe inve~ clyaced, a perfect gas was assumed,
B. Body Point Calculation

The solution point (6) of the body point difference net-
work lies in the body surface (blade profile), as shown in
Figure 4.2. Three bicharacteristics and the particle path,
with base points (1), (2), (3), and (5) in the initial data
surface, are used in the finite—differencé solution. At the
solution point (6), the reference vectors ai(G), Bi(G) are
oriented with Bi(G) assigned the direction of the body surface

inward normal ni(6) to give three bicharacteristic base points

in the solution space.



74

BICHARACTERISTIC

SOLID

PARTICLE PATH BOUNDARY

INITIAL DATA SURFACE

a. View showing bicharacteristics, particle path, solid
boundary, and initial data surface

CELL

b. Projection onto initial data surface showing differential
domain of dependence and grid point cell

Figure 4.2. Body point network
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The system of difference equations used to determine the
dependent variables ul(6), u2(6) and p(6) includes the three
wave surface compatibility relations, Egs. 3.24-3.26, and the
noncharacteristic relation, Eg. 3.28, The relation needed in
addition to these is the flow tangency condition at the solu-

tion point (6), i.e.,
o) 6) = 1
ui(o}ni(o) 0 (4.1)

This system of equations can be written as a matrix equation,

similar to Bg. 3.25, as
2 8, ¢, 0 1|[p(s) F|
2 B2 C2 1 0 ul(6) F2
2 83 C3 0 1 u2(6) = F3 (4.2)
5 ou. (6)
0 54 C4 0 0jlp(6) a“(6) aj(G) ai(6) axi At 0
! au.lc’\
2 AV 7
E. 00 1 1j|p(6) a®(6) 8,(6) B, (6) ~J——~—3xi st |Fg)

in which the fourth eguation is now the flow tangency condition.
Elimination of the last two unknowns, involving derivatives at

the solution point, from Eq. 4.2 yields the system
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- ) i - - - - -
0 B,-B, C,-Cq p(6) F,-F,

4 131+232+B3 c1+2c2+c3 ul(6) = F1+2F2+F3—2F5 (4.3)
° P 4 IR AR _

From Eq. 4.3, the solutions for p(6), ul(6), and u2(6) can
easily be cbtained. Density, p(6), is obtained from the

isentropic relation, Eq. 3.31, written along the particle path.
C. Upstream Boundary Point Calculation

The upstream boundary point calculation is employed along
the panel A-B in Figure 4.1. In the difference network,
consistent with the body point calculation, the reference
vector pair ai(G), Bi(6) is oriented with Bi(G) along the
outward normél- n, (6), to the scluticn e
Figure 4.3.

In the cascade flow applications investigated here, sub-
sonic inlet flow is assumed. In this case, the differential
domain of dependence for point (6) lies partially upstream of
the inlet boundary, and the particle path projects outside the
solution space, as shown in Figure 4.3. Point (2) in the usual
interior point scheme is the only base point lying inside the
solution space, and, therefore, only one wave surface
compatibility relation is available in the solution. The

remaining conditions needed are supplied as boundary conditions.
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BICHARACTERISTIC

UPSTREAM
BOUNDARY INITIAL DATA SURFACE

a. View showing bicharacteristics, particle path, upstream
boundary, and initial data surface

UPSTREAM
BOUNDARY~__ “T
/
/
{Bhnl ~ 1
GRID POINT
\ TSCELL
AN
~ .- l J‘L

b. Projection onto initial data surface showing differential
domain of dependence and grid point cell

Figure 4.3. Upstream boundary point network
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In the present scheme, it is assumed that the stagnation
pressure, pg;, stagnation temperature, TO' and the u, velocity
component distributions along the upstream boundary are given.
Thus, the remaining primative variables ul(G), p(6), p(6) are
determined in the solution.

The applicable wave surface compatibility relation for the
single bicharacteristic with base point (2) is Eq. 3.25. Sub-
stitution of ai(G) = {0,1}, and Bi(6) = {~1,0} into Eq. 3.25,
followed by rearrangemen: to put unknowns on the left side of

the equation yields

2 p(6) + [p(2) a(2) B (2) - o(6) a(6)] uy(6)

=2 p(2) + [p(2) a(2) B,(2) - p(6) a(6)] u,(2)
5 du, (6)
*eM2) al2) By (2)[0,(2) -y (6)] - p(6) aT(6) T bt
2. . . Bu1(2) 8u1(2)
- ,.",".f‘ a_(z) 4&31(2) {31(2) ““'a* - 0 ‘:"'2(2) —a%'—_}
*1 2
du, (2) du, (2)
+ 0, (2) [a, (2) — + a.(2) 1} At (4.4)
pA i X 2 EP
1 2
du, (6)
The derivative S in Eq. 4.4 is treated as a known quantity
2

on the right side of the equation and is obtained from the
given distribution of u, along the upstream boundary.

From the definitions of stagnation pressure and tempera-
ture, and acoustic speed, we are able to write for a perfect

gas that
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al6) = a’(6) + Lt [ui(6) + ul(6)] (4.5)

and
u]2_(6) + ul(6) AT
)] (4.6)

Py (61 = p(6) [1 + LE ¢ .
a“” (6)
In Eq. 4.7, aO(G) is the acoustic speed based on stagnation
temperature. Both pb(6) and a0(6) are known from the given

inlet stagnation conditions. Density, p(6), is found from

the perfect gas relation

o(6) = YRL68) (4.7)

Equations 4.4, 4.5, and 4.6 comprise a system of three
equations for the unknowns ul(6), a{6), and p(6).

Alternative to specification of inlet u, distribution, the
distribution of inlet flow angle (i.e., the ratio uz/ul) has
been frequently prescribed in cascade flow solutions (ref. 9).
However, in the case of finite location of the upstream
boundary, it appears more reasonable to prescribe the whirl
velocity (u2) distribution, and to solve for the resultant

axial velocity (u,) distribution. A

TJan. in +he cace nAf au
A\180, 1n Tthe cacgce oI g
e

sonic flow with subsonic axial velocity component, specifica-

tion of inlet flow angle would violate the unique incidence

principle (ref. 63).
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Finally, for supersonic inlet flow with supersonic axial
velocity component the differential domain of dependence lies
entirely upstream of the boundary. 1In this case no boundary
points can be computed, and the distributions along the boundary
of all the dependent variables Ujr Uy, P and p must be

specified.
D. Downstream Boundary Point Calculation

The downstream flow boundary is specified as the panel G-H
in Figure 4.1. At a solution point (6) on the boundary,
reference vectors ai(6), Bi(6) are orientated with 81(6) along
the outer normal to the solution space.

The exit flow condition of interest is that with subsonic
axial velocity component. As shown in Figure 4.4, the domain
of dependence for the solution point (6) positions itself with

base points (1), (2}, (3) nd (5) with

upstream of the boundary. With one bicharacteristic of the
usual interior point scheme missing, a boundary condition must
be specified. Hence, in the downstream boundary point calcula-
tion the distribution of static pressure along the downstream
boundary is assumed known.

The compatibility relations are Egs. 3.24-3.26, and the
noncharacteristic relation is Eg. 3.28. Rewriting Egs. 3.24-
3.26 with ai(S) = {0,~1}, §,(6) = {1,0}, and rearranging to put

the unknowns on the left side of the equations, we obtain
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BICHARACTERISTIC

DOWNS TREAM
INITIAL DATA BOUNDARY

SURFACE

a. View showing bicharacteristics, particle path, downstream
boundary, and initial data surface

T
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{
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b. ©Projection onto initial data surface showing differential
domain of dependence and grid point cell

Figure 4.4. Downstream boundary point network
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[p(1) a(l) a;(1)] u;(6) + [p(1l) a(l) a,(1) - p(6) a(6)] u,(6)

+

+

+

2
0(6) a“(6) B, (6) B, (6)

p (1) a® (1) {8, (1)

8, (1) (8, (1)

du. (6)

—2— At = 2 [p(1) - p(6)]
1

[p(1) a(l) al(l)] ul(l) + [p(1) al(l) az(l) - p(6) a(6)] u2(l)
Bul(l) Bul(l)
B, (1) —s=— + B, (1) ]
1 3X1 2 8x2
auz(l) auz(l)
mbxl + 82(1) sz 1}1at (4.8)

[0(6) a(6) + p(2) a(2) By(2)] u (6) + [p(2) a(2) B,(2)] u,(6)

+

o(6) a%(6) @y (6) oy (6)

[n(6) a(6) +

- =\ v

2,
0{2) a \2){al(2)[al(2) —EEZ-— + a2(2)

o, (2) [ay (2)

n{2Y a(?2)
Ny SNy

du, (2)

0X

2

1

du. (6)
At = 2 [p(2) - p(6)]

—~
e
~—

ou, (2) Bul(Z)
]
ax2
au2(2)
u2(2) e 1} At (4.9)

2
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(6) a®(6) B.(6) B. (6) uy (6) At = 2 [p(3) - p(6)]
plbl a j i 3%, s tp P

+

2 aul(3) 8u1(3)
- p(3) a (3){81(3) [31(3) - 7 82(3) —g§—~—]
1 2
du. (3) 8u2(3)
+ 32(3) [31(3) —521——-+ 82(3) 3X2 1} At

Equation 3.28 becomes

2 au. (6)
p(6) a®(6) o, (6) o (6) s, At
2 3u. (6)
+ p(6) a“(6) B (6) B (6) —E%I—_ At
p au (51 B (8)
=2 [p(5) - p(6)]- p(5) a“(5) I = + = ]
1l 2

The system of Egs. 4.8-4.11 rewritten as a matrix

equation, again similar to Eq. 3.29, is

[p(3) a3} a;(3)] u,(6) - [p(3) a(3) a2{3) - p(6) a(6)] u,(6)

[p(3) a(3) 01(3)1 0y (3) = [p(3) al3) uy(3) - p(6) al6)] u,(3)

(4.10)

(4.11)
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Bl Cl 0 1 ul(6) F;1

B2 C2 1 0 u2(6) F2

B3 C3 0 1lii{p{(6) a"(6) aj(G) ai(6) —5%;—— At F3

2 du. (6)

0 0 11 [f(G) a“(6) Bj(6) Bi(6) —5%7—— AEJ FS

L - 1 L
Two equations can be obtained from Eg. 4.12

C\ 1

Dl—B3 Cl-C3 ul(6) Fl-F3

B +2B,+Bg C+2C,+Ca1 1y, (6)| = Fl+2F2+F3-2F5 (4.13)

which can be easily solved for ul(6), u2(6)° Density p(6) is
found from Eg. 3.31.

In the case of supersonic exit flow with supersonic axial
velocity component u,, the domain of dependence lies entirely
upstream of the downstream boundary. Hence, the distribution
of static pressure cannot be specified, and the downstream

poundary point calculation becomes simply the interior point

caiculation.
E. Trailing Edge Boundary Point Calculation

The role of viscosity cannot be ignored in the solution of
cascade flows. 1In the real flow, boundary layers grow along

the pressure and suction surfaces of the blades and coalesce at
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the trailing edge to form the blade wakes. It is precisely the
shedding of the blade surface boundary layers at the trailing
edge that sets the circulation and thus the loading on the
blades. A steady, inviscid flow analysis in which no account-
ing is made for the real flow effects at the trailing edge
would yield simply the zero lift colution.

The classical criterion used to set the steady circulation
on lifting blades or airfoils is the Kutta condition (see ref.
64). The Kutta condition, developed from experimental observa-
tions, states that the circulation for the flow past an air-
foil is of strength just sufficient to cause the flow to leave
the airfoil smoothly at the trailing edge. For the academic
case of blades with cusped trailing edges, the Kutta condition
requires the velocities on the pressure and suction surfaces to

be equal at the trailing edge point. For real blade profiles

ace in the trailing edge region according to some
additional criteria (see ref. 65). Unfortunately, no accepted
method based on a universal model or correlation of the
trailing edge flow is available to determine the location of
the stagnation point.

The following discussion outlines the blade trailing edge
calculation used in the present method. The scheme is based on

an approximate model of the blade wake in steady flow. As noted
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before, the tréiiing edge point (points E and F in Figure 4.1)
is located at the iptersection of the blade mean camber line
and the trailing edge plane of the cascade. This particular
location was selected since it approximates the midpoint of
the wake in the trailing edge plane. The flow direction at
this point is taken as the direction of the blade mean camber
line at the trailing edge, as shown in Figure 4.5.

The blade trailing edge point calculation is similar to
the body point scheme. The difference network, shown in
Figure 4.5, involves three bicharacteristics with base points
(1), (2), (3) and the particle path with base point (5). The
reference vectors ai(s), Bi(6) are oriented with qi(ﬁ) directed
along the trailing edge plane of the cascade. With this
particular orientation of the reference vectors, the solution
at point (6) depends on initial data on both sides of the blade

-
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£ the bicharacteristic

urface as indicated by the locations ©
base points in Figure 4.5. The system of difference equations
for the dependent variables ul(6), u2(6), p(6) is given in
Eq. 4.3 where now the vector ni(6) satisfying Eq. 4.1, and
shown in Figure 4.5, is the unit normal to the blade mean
camber line at the trailing edge. Density p(6) is obtained
from Eq. 3.31.

In the wake model, it is assumed that the flow separates

from the blade at the points of tangency of the blade pressure

and suction surfaces and the trailing edge circle. The flow
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directions at these points, shown as dashed lines in Figure
4,5, are tangent to the blade surfaces. It is also assumed
that the pressure, density, and magnitude of velocity do not
vary across the wake in the trailing edge plane. The variation
of velocity across the wake is shown in Figure 4.5 with ui(P)
the velocity on the pressure side, and ui(s) the velocity on
the suction side. Following the solution at point (6), the
velocity vectors ui(P),and ui(S) are obtained by simply
rotating ui(6), as shown in Figure 4.5. Next, the finite
thickness of the wake is neglected, and the vectors ui(G),
ui(P), and ui(S) are assumed to pass through point (6). The
variation in flow angle through the wake is accounted for only
in the flow solutions at points Sl’ 52' S3, Pl’ Pz, P3, shown
in Figure 4.5. The solution data p(6) and p(6) along with
ui(S) or ui(P) are used in the initial data plane for the solu-
.
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jus
polynomials in the flow solutions at points Sq4 Sz, and S3
incorporate u, (S) at point (6) in the grid point cells; the
interpolation polynomials in the flow solutions at points Py

P,y and P, incorporate ui(P) at point (6) in the grid point

cells.
F. Closure

The body point, upstream boundary point, and downstream

boundary point calculations were tested using simple one-
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dimensional unsteady flow examples. Three examples of
transient duct flows were solved, and the results of these
solutions are presented in Appendix F. Where available, the
results of other solution methods were used for comparison.
The comparisons with the computed results indicate that the

boundary point schemes yield accurate transient and asymptotic

steady state solutions.
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V. OVERALL NUMERICAL ALGORITHM FOR

SOLUTION OF CASCADE FLOWS

Essential aspects of the overall numerical algorithm for
solution of steady cascade flows are discussed. The overall
algorithm consists of the repetitive application of the
interior and boundary point calculations in successive time
planes over the cascade grid, with the sclution starting from
prescribed data at grid points in the initial data plane. The
solution is advanced in time with the steady state boundary

conditions imposed until the asymptotic steady state solution

is obtained.
A. Normalized Variables

Steady cascade flows are computed by applying steady inlet
stagnation property and whirl velocity distributions along the
upstream boundary of the cascade solution grid, and steady dis-
charge static pressure distributions along the downstream
boundary. If, in addition, the impcsed distributions of
stagnation pressure and density are uniform along the upstream
poundary, it is convenient to define normalized (primed)

23 L : i

dependent variables

ui = {(5.1)



uy = 2 (5.2)
Poy |
Po1

p' = 52— (5.3)
01
o

o' = £ (5.4) .
Po1

where Po1 and Pgy are the upstream stagnation pressure and
density, respectively. Use of the normalized variables yields
steady state solutions independent of the values of the up-=
stream stagnation state properties. Also, the upstream stagna-

tion pressure and density become simply

t -
pgy = 1.0 (5.5)

Po1 = 1.0 (5.6)

B. Initial Conditions

es ug, uyy P’ and

p' must be specified at all grid points in the initial data
plane. For this purpose, any reasonable distributions of the
variables consistent with the blade surface tangent flow

condition may be used. In the cascade flow solutions reported

in Chapter VI, zero upstream whirl velocity component was
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specified. 1In this case it was convenient to specify the up-~

stream stagration conditions throughout the flow field, i.e.

u; = 0.0 (5.7)
ué = 0.0 (5.8)
p' = 1.0 (5.9)
p' ="1.0 (5;10)

and to start the flow by imposing uniform steady downstream
pressure, pé, along the downstream boundary. The resulting
transient solution is similar to the physical situation in

which a valve is instantaneously'0pened downstream of the

cascade.

[
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Bivariate interpolating polynomials (see Appendix H) are
used to determine initial data (ui, ué, p', p') at base points

in the interior and boundary point characteristic networks.

The polynomials locally fit the

_________________ v e i 1 data
consisting of the solution point on the initial data plane and
eight neighboring points. Thus, a cell of nine points is
assigned to each grid point for construction of interpolating

polynomials. Typical cells are shown in Figure 5.1.
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Figure 5.1. Cascade solution grid showing typical grid point
cells
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The assignment of cell points is based on the order of
points in a rectangular grid point stencil. Each point in the
solution grid is identified by indices I, J, with I taking
successive integer values for constant-x, panels starting with
I =1 on the upstream boundary. The index J takes values cor-
responding to the point number along each constant—xl panel
starting with J = 1 on the lower boundary of the cascade grid.

The nine point cell for an interior grid point consists
of the point and eight neighboring points in the grid point
stencil (I,J). Interior point cells are illustrated in Figure
5.1 where dots indicate the interior grid points considered,
and the shaded areas cover the corresponding cells. As shown
in Figure 5.1, this scheme results in distorted cells within
the blade passage. This distortion of the cells was found to
have negligible effect on the accuracy of the interpolating
polynomials.

Boundary points along the upstream and downstream
boundaries are assigned the same cells as the adjacent interior
points along constant-x

2 panels, again as indicated in Figure

5.1. Also, as can be seen, blade surface boundary points

the same cells as the adjacent interior points along constant-
X1 panels.

The periodic flow requirement for points upstream and
downstream of the cascade is enforced along the bounding

constant-x2 ranels (periodic boundaries) by proper assignment
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of cell points and initial data. As iﬁdicated in Figure 5.1,
a panel of pseudo grid points is added outside the solution
space along the periodic bqundariés. These pseudo points are
located one mesh spacing sz from the periodic boundaries. The
grid point cells for points along the periodic boundaries
(excluding the endpoints of the boundaries) consist of the
point on the bouﬁdary and the eight nearest neighbors. Also,
for cell construction at the leading and trailing edge points,
pseudo blade surface points are added outside the solution
space along the first constant=xl panel inside the blade
passage. The cells for the leading and trailing edge points
are constructed as shown in Figure 5.1 with three of the nine
points on the blade surface.

Data at all pseudo points are set equal to the correspond-
ing data at grid points lying one blade pitch from the points

in the x_, direction

et s -2 .

D. Time Step Regulation

The time increment between successive solu£ion planes is
regulated such that the Courant-Fredrichs-Lewy (CFL) stability
criterion is satisfied at all grid points. According to
Equation 13.3 the maximum allowable time step at each point is
a function of the local velocity and acoustic speed and the
minimum distance to the convex hull of the difference scheme.

Equation 13.3 is used to calculate a maximum time step at each
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mesh point, and the minimum of these values is taken as the
integration step size. Following the solution for the new
time plane, the maximum allowable time step is recalculated
at all points from Equation 13.3 using the solution plane data.
The minimum of these values, At is compared with the integra-
tion step size. If At' exceeds the integration step size, the
solution plane is recalculated with the integration step size

set equal to At'.
E. Convergence Criterion

The criterion used for determining convergence of the
transient solution to the steady state solution is based on
the fact that stagnation pressure is constant in steady
isentropic flow fields. The definition of total pressure,
written in terms of the normalized variables, is
I : .y

{ 7 ,21!\'//\(—'!

py = p' |1+ L2

(5.11)

where a' is the normalized acoustic speed, obtained from the

perfect gas relation

X
a' = IP:} (5.12)
"1
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The values of total pressure are calculated at all grid points
on each solution plane from Equation 5.11. When values at all
grid points agree with the inlet total pressure, pél = 1.0, to
within a specified tolerance, the solution is assumed to be

converged.
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VI. CASCADE FLOW EXAMPLES

The computed results for two cases of steady flow through
a turbine cascade are presented. These solutions were obtained
as limit solutions at large time of the transient flow analysis.

The first case presented involves subsonic flow throughout
the cascade. The second example involves subsonic inlet and
discharge flows, but with transonic flow over a portion of the
cascade passage. In both cases, the results are compared with

experimental cascade data given by Huffman et al. (66).
A. Cascade Geometry and Solution Grid

The turbine cascade is shown in Figure 4.1. The blade
profiles shown are representative of turbine nozzles in current
aircraft engine designs. The geometry data for the cascade are
tabulated in Table 6.1, and associated nomenclature is
described in Figure 6.1.

The cascade solution grid in Figure 4.1 consists of 41
uniformly spaced constant-xl panels with 12 points along each
panel. The distances from the cascade to the upstream and
downstream boundaries are one-half the axial blade chord, C,-
Twenty-one constant-xl panels are located from the leading edge
to the trailing edge of the blades, and 10 constant—xl panels

are located upstream and downstream of the cascade.
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MEAN CAMBER LINE

SUCTION SURFACE

Figure 6.1. Cascade nomenclature

Table 6.1. Cascade geometry data

Blade spacing, S 1.356 in.
Blade chord, C 1.800 in.
Axial chord, Cx 1.200 in.
Axial distance from leading edge to throat

location on suction surface 0.790 in.
Stagger angle, y° - 49,85 deg.
Blade leading edge mean camber angle, Ky 0.00 deg.

Blade trailing edge mean camber angle, Ko -65.00 deg.
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B. Subsonic Flow Case

In this example, the steady state boundary conditions
were prescribed as; (1) zero whirl velocity component along the
upstream boundary, and (2) uniform normalized static pressure
pé = 0,685 along the downstream boundarv. The initial data at
all grid points were set equal to the stagnation state condi-
tions (i.e., ui = 0.0, ué = 0.0, p' = 1.0, p' = 1.0). Approxi-
mately 1400 time steps were required to obtain the steady state
solution. The computed steady flow results are presented in
Figures 6.2~6.5.

In Figure 6.2, the computed values of blade surface static
pressure p' are plotted versus normalized distance along the
blade, x/CX. Also presented are the experimental cascade data.
Good agreement between the numerical solution and the experi-
mental data is shown. In both the computed and test data, the
luwest value oI pressure occurs on the blade suction surface

near the throat location (x/Cx = 0.59). The pressure distribu-

A A o v e e

tion on the blade pressure surface indicates approximately

uniform flow for X/Cx < 0.5, followed by accelerated flow to

the trailing edge. On the blade suction surface the reverse is

true; that is, accelerated flow is indicated upstream of the

thrcat, with nearly uniform flow downstream of the throat.
Velocity vectors at every other point in the solution

grid are shown in Figure 6.3. Large velocity gradients are

observed upstream of the passage throat, while downstream of
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Figure 6.4. Contours of static pressure p'

Subsonic flow case; pé = 0.685
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Figure 6.6. Schlieren photograph of cascade flow field

Subsonic flow case; pé = 0.685
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the throat an approximately uniform distribution of velocity
can be seen. The velocity distribution around the leading edge
of the blade indicates that the stagnation point is located on
the pressure surface of the blade. In the region of the up-
stream boundary the velocity gradient in the axial direction

is approximately zero. This tends to support the assumption of
uniform whirl velocity distribution along the upstream boundary.
The nonuniform distribution of axial velocity component along
the upstream boundary is due to the influence of the blades on
the upstream flow.

A contour plot of computed normalized static pressufe, p',
over the flow field is presented in Figure 6.4. The highly
two-dimensional character of the flow is indicated. The maxi-
mum preséure gradients occur near the passage throat, with the
minimum pressure occurring on the bl;de suction surface near
the throat location. Upstream cf the cascade a neariv uniform
pressure distribution is shown. At the downstream boundary the
axial pressure gradients are approximately zero. This supports
the assumption made of uniform static pressure along the down-
stream boundary.

Lines of constant Mach number in the flow field are shown
in Fiqure 6.5. The contours indicate rapidly accelerating flow
around the blade leading edge on the suction surface, and
relatively uniform flow on the pressure surface near the

leading edge. Also, an approcximately unifcrm distribution of
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Mach number is shown downstream of the throat on the blade
suction surface. At the upstream boundary, the contour lines
are nearly horizontal, indicating essentially zero Mach numbexr
gradient in the axial direction near the boundary. The Mach
number gradient shown along the upstream boundary, however, is
substantial, and, as stated previously, is due to the finite
location of the boundary. A nearly uniform distribution of
Mach number is indicated in the region of the downstream
boundary.

A schlieren photograph of the cascade flow field is
presented in Figure 6.6. In this photograph, the mean flow
angle in the blade wake is approximately equal to the blade
mean camber angle at the trailing edge which was the assumption
made in the blade trailing edge calculation. The general
'agreement of the numerical solution and experimental data
presented in Fidure 6.2 indicates the blade wake model was

adequate.
C. Transonic Flow Case

The boundary conditions for this cascade flow example were
the same as in the subsonic flow case except that the down-
stream normalized pressure, pé, was reduced to 0.578. In this
case the flow accelerates to the transonic regime in the blade
passage, thus providing a test for the numerical solution

method regarding mixed flow predicticon capability. The initial
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data for the transient solution were taken from the steady
state solution in the subsonic flow case. Approximately 1000
time steps were required to obtain the steady flow solution at
the new downstream pressure. The computed steady flow results
are presentéd in Figures 6.7-6.10.

The computed blade'surface pressure distribution is com-
pared in Figure 6.7 with the experimental cascade data.
Agreement between the computed results and the experimental
data is good bver most of the blade surface. However, on the
blade suction surface for x/CX > 0.5 the numerical solutionl
predicts a much smoother pressure distribution than the experi-
mental data shows. The discrepancy in pressure distributions
is likely due to the close proximity of the cascade to the
imposed uniform pressure distribution along the downstream

boundary in the numerical solution. In support of this con-

€ seen ircm the pressure <on
Figure 6.9 that a large axial pressure gradient exists along
the downstream boundary. McDonald (9) determined that with
uniform specification of downstream pressure in high Mach
number flows it is necessary to maintain a minimum distance
equal to the axial blade chord between the cascade and the
downstream boundary. As shown in Figure 6.7, the pressure
level on the blade suction surface indicates supersonic flow

downstream of the throat. 2Also, the minimum blade surface

pressure does not occur at the blade throat as in the subsonic
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Figure 6.9. Contours of static pressure p'

Transonic flow case; pé = 0.578
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Figure 6.10. Contours of Mach number

Transonic flow case; pé = 0.578
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flow case (see Figure 6.2), but further downstream at the loca-
tion x/Cx = 0.9. This movement of the minimum pressure point
downstream of the throat is indicative of the fact that super-
sonic flow has been established. Comparison of Figure 6.7 with
Figure 6.2 for the subsonic flow case shows substantially
higher blade loading in the transonic flow case, with the
majority of the loading increase occurring on the rear half of
the blade.

The velocity vector field for this example is presented in
Figure 6.8. These results resemble those presented in Figurc
6.3 for the subsonic flow case. The influence of the blades on
the upstream velocity distribution is again evident. Also the
leading edge stagnation point appears to be located in approxi-
mately the same location as in the subsonic flow case. One

difference that can be seen is the increased velocity level
which existe downstream of the throat,

The contour plot of normalized static pressure, p', is
presented in Figure 6.9. As in the subsonic flow case (see
Figure 6.4), a nearly uniform distribution of static pressure
exists upstream of the cascade. The contour line distributions
in Figures 6.4 and 6.9 are very nearly the same upstream of the
passage throat indicating that both flow cases are close to the
choked condition. Much higher pressure gradients are shown
downstream of the passage throat in the transonic flow case.

Also, as stated above, the minimum pressure point location has

moved downstream to a point near the blade trailing edge on the
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suction surface.

Lines of constant Mach number in the flow field are shown
in Figure 6.10. The supersonic flow region is located on the
blade suction surface near the trailing edge. Again, the con-
tour line distribution upstream of the thrcat is nearly the
same as that in Figure 6.4 for the subsonic flow case.

In the schlieren photograph presented in Figure 6.11, a
weak normal shock is shown on the blade suction surface near
the trailing edge. Evidence of this shock wave is also shown
in the experimental blade surface pressure distributicn pre-
sented in Figure 6.7 where a rapid rise in pressure exists on
the suction surface downstream of the location x/CX = 0.9.

This shock wave has been smeared out in the numerical solution,

as indicated in the contour plots presented in Figures 6.9 and

6.10.
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VII. CONCLUSIONS AND RECOMMENDATIONS

A method of characteristics numerical integration scheme
naving second-order accuracy has been developed for solution of
two-dimensional unsteady flows in gas dynamics. The method has
been applied to steady trapsonic flow analysis in turbine
cascades with the steady state solution computed as the
asymptotic limit in time of a transient solution.

Computed results‘of the cascade analysis are in good
agreement with experimental data. The results indicate that
the present numerical method lends itself to accurate treatment
of cascade boundary conditions and yields accurate mixed-flow
solutions. It is concluded that the added complexity involved
in the formulation and programming tasks with the method of
characteristics over finite-difference methods is justified.
The developed analysis method provides a useful and effective
tool for the turbomachinery aerodynamicist in the design of
high Mach number blading.

The success of the present method in solution of blade-to-
blade flows in turbine cascades suggests that the method could
be applied as well to other steady or unsteady two-dimensional
flow problems. Flows in two-dimensional nozzles and diffusers
could be solved by an essentially straightforward application
of the method. Also, axisymmetric internal flows could be
handled with only minor modifications. Furthermore, the method

could be extended for solution of blade-to-blade and hub=to-=tip
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flows on arbitrary stream surfaces in rotating blade rows.
Although no effort was made to consider flows with strong
shocks, it appears that shock wave tracing capability could be
added to the overall algorithm. Application to supersonic
flows in compressor cascades, including entrance region and
through-fiow analyses, would require the addition of such
shock wave tracing procedures.

The follo&ing recommendations for further study on the

present numerical method are made:

(1) It was found that the bicharacteristic tangency
condition was not needed to maintain second-order
accuracy in the flow solutions considered, and the
reference vectors at bicharacteristic base points
could be simply assigned their directions at the
solution point. Cline and Hoffman (57) came to the
same conclusion in applving Butler's scheme to three-
dimensional steady supersonic flows. It should be
noted, however, that this observation concerning the
bicharacteristic tangency condition is based solely
upon numerical experience with the method and has
not been verified analytically. Further study is
needed to substantiate this finding.

{(2) Maximum errors in the computed stagnation pressures
in the steady flow cascade solutions occurred at the

boundaries cf the cascade flow field. These errors
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may be due to the fact that the solution points at
the boundaries were located at the edges of the
corresponding grid point cells where maximum ‘error
in least square interpolations would occur. The
interpolation error may be reduced by introducing
higher terms into the least square interpolating
polynomials for the boundary points. Other inter-

polation procedures for the boundary points should

also be investigated.
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X. APPENDIX A:
GENERAL THEORY OF QUASI-LINEAR HYPERBOLIC

PARTIAL DIFFERENTIAL EQUATIONS

The general theory of hyperbolic systems of partial dif-
ferential equations as needed in the development of the general
numerical method (Appendix B) is presented. Also presented is
supporting theory for the development of characteristic rela-
tions previously used in Chapter II for plane two-dimensional
unsteady flow. The theory and its development is that due to

Rusonov (67) and Ransom (14).
A. Characteristic Surfaces

Consider a general system of n quasi-linear, hyperbolic,

partial differential equations in n dependent variables u,

auv
nvi 'a—x— = bU (‘,.‘.i\) = l,2,...n) (10.1)
i
where auvi and bu are known functions of u, and X The

summation convention is used with repeated subscripts unless
otherwise stated. Greek subscripts run over the range 1 to n,
while Latin subscripts have the range 1 to 3. The system of
equations, Eq. 10.1, is a complete set, i.e., n equations

having n dependent variables.
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If the independent variables are considered as coordinate
axes in a three-dimensional space, then any set of real
numbers {al, ay a3} represent components of a vectour a; in
the space. The directional differential of any arbitrary

function f(xi) along a, denoted by daf, is
d.f=a, & ar (10.2)

where T is a parameter increasing in the direction of‘ai, and

has magnitude 1/[a;

Consider next a linear combination of the equations of
the system formed by taking the scalar product of Egq. 10.1 and

the left eigenvector wu(u =1,2,...,n)

Ju
. Vv _ _
wudu\)i axi Wubu (H:V 1,2,...,1'1) (10.3)
If we let
-‘;’ . = v . 1024\
vl wuap\)l (10 /
and
B=wphb (10.5)
Iaat!
then Eq. 10.3 can be written in directional differential
notation as
d, u, = B dr (10.6)

\Y
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According to Eg. 10.4 there are n vectors in, and their
orientation in space depends on the elements of W,

The hyperbolic character of the original system of equa-
tions is revealed by posing the following question: is it
possible to choose the elements of v such that the resulting
vectors w\)i are linearly dependent or, in other words, such
that the vectors in lie in a plane? For hyperbolic systems
of equations such values for the elements of wu exist. The
plane containing the vectors in is called a characteristic
plane, and its normal N, is called a characteristic normal. A
surface in space which is everywhere tangent to a character-
istic plane is called a characteristic surface. The values of
the dependent variables cannot be arbitrarily specified on a
characteristic surface since they must satisfy a compatibility
relation, Eq. 10.6, written on this surface.

I-h

O

1 . ~ - o 2 e S e S LS
N is a2 char 2C nCIma:r; wneli thae Condltlolil tnat

1

all vectors in lie in the characteristic plane corresponding

to N. is
1
Ni in =0 (v=1,2,...,n (10.7)
or, making use cf Eg. 10.4
. o= .N. = .
Nl wu au\)l ‘aUVl l)wu 0 (10.8)

where Ni and wU are to be determined. Equation 10.8 is a
system of linear homogeneous equations for the elements of the

left eigenvector. If a nontrivial solution for wu exists,
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then the determinant of the coefficient matrix with elements

a .N. must vani i.e.
wvily us anish, '

det {auviNi} =0 (10.9)

which is an nth order polynomial in the components of Ni'
Equation 10.9 is called the characteristic equation of the
original system of partial differential equations, and it
yields a condition that must be satisfied by any character-

istic normal.
B. Characteristic Surface Geometry in Gas Dynamics

Two-dimensional unsteady flows, and three~dimensional
steady supersonic flows in gas dynamics, are governed by
systems of quasi-linear hyperbolic partial differential equa-
tions in three independent variables. In both cases the
characteristic equation factors as follows into a repeated

linear factor and a symmetric quadratic factor

)n—2

( A

U N ijNiNj =0 (10.10)
where n is the order of the original system of eguations. The
vanishing of either factor in Eg. 10.10 satisfies the equation

and, therefore, two different types of characteristic surfaces

exist.
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1. Characteristic flow surfaces

Characteristic flow surface normals, Ni' satisfy the
equation obtained by setting the first factor in Eq. 10.10 to

Zero, i.e.,

U.,N, =0 (10.11)

where Ui is a function of the dependent variables u (v =
1,2,...,n). According to Eg. 10.11, at a point in space the

normal Ni is any one of the infinite family of vectors which

lie in a plane orthogonal to the vector U,. Thus

i ; character-

istic flow surfaces are locally tangent to the vector U, as

shown in Figure 10.la. The envelope of all characteristic flow
surfaces is a curve locally tangent tc Ui' In two-dimensional
tneteady flow this curve is the particle path, while in three-

dimensional steady flow it is the streamline,

to
.

the vanishing of the second factor in Eg

A,.N.N. =0 (10.12)

where Aij = Aja are functions of the dependent variables
u (v=1,2,...,n). Equation 10.12 is a quadratic equation of
a cone with the normals Ni directed along the cone generators

see Mppendix C on quadric cone geometry). At a point in

space there exist an infinite number of characteristic
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PLANE OF NORMALS

CHARACTERISTIC
FLOW SURFACE

------ ~ ™

ENVELOPE OF

FLOW SURFACES

a. Flow surface geometry

RISTIC CHARACTERISTIC
BICHARACTE oD

CONE OF NORMA

CHARACTERISTIC WAVE
SURFACE

b. Wave surface geometry

Figure 10.1. Characteristic surface geometry for flow
problems in gas dynamics
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surfaces corresponding to the infinite number of normals which
satisfy Eq. 10.12. The envelope of these surfaces is called
the characteristic conoid, shown in Figure 10.£b. The recip-
rocal cone to the cone of normals is called the character-
istic cone and is locally tangent to the characteristic conoid.
The cﬁrves of contact between the characteristic wave surfaces
and the characteristic conoid are called bicharaéteristics.
In three-dimensional steady supersonic flows, the characteristic
cone is the right-circular Mach cone, while in two-dimensional
unsteédy flows the characteristic cone is the oblique-circular
sonic cone. In both flow cases, the local tangent vector to
the envelope of characteristic flow surfaces, Ui’ lies along
the axis of the characteristic cone.

The equation of the characteristic cone, or equivalently,
the equation of the reciprocal cone to the cone of normals is,
according to Ba. 16.32

-1
i xixj =0 (10.13)

A
where A{% are the elements of the inverse matrix to Ai.. The
vectors x; satisfying Eq. 10.13, lie along generators of the
characteristic cone. This cone is locally tangent to a dif-
ferential element of the characteristic conoid whose equation
is

-1 _

in which the vectors dx, are locally tangent to the
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bicharacteristics.
C. Compatibility Relations

The coméatibility relation, Eq. 10.6, is an interior
operator on a characteristic surface; thus, the equation can
be written in terms of derivatives in only two independent
variables. Ccnsider the transformation from coordinates X, to
a new system xi, where xé = constant is a characteristic

surface. Choose the components of Ni such that

Q

X3

-a—X; = Ni (10.15)

The original system of equations, Eg. 10.1, under this

transformation becones

au .
V
i 3xr =Py (v =1,2,.0m) (10.16)
where
ox!
1 —
qvi T vy %, (10.17)

If Eq. 10.16 is multiplied by the left eigenvector defined by

For 1N A ha an ammivalant fArm Af B 10 R ic
&2g8. iV.Z, tTaen an equiva’lent Iorm o G, V.2, 1S
auv
a' . = =Wwb (10.18)
HoHVL 3%y uu

According to Egs. 10.8 and 10.15 we have
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axé
- 3 . _
i fuvi Mg p v 90X, p 33 =0 (10.19)
Thus, Eq. 10.18 becomes
Buv auv
1 Vv t —
ATRRNTNS | 90X * (TR axé Wubu (10.20)

Equation 10.20 is the general form of the compatibility rela-
tion which must be satisfied by the dependent variables, u,
on a characteristic surface corresponding to eigenvector w .

Equation 10.20 can be more simply expressed as

Buv auv
E\)?}?]T:.*.F\) -éx—é=D (10.21)

where the coefficients Ev and Fv depend on the particular

choice of the xi and xé directions.

D. 1Interdependence of the Compatibility Relations

The number of independent soluticns for the left
vector v, in Eq. 10.8 corresponding to a particular normal Ny
is determined by the rank of the coefficient matrix. If p is
the rank of the matrix and n is the order of the system, then

the number of linearly independent solutions s for v is

Ss=n-p (10.22)



137

Thus, there are s independent compatibility relations for each

normal which, according to Eq. 10.6, have the form

d. u =8Bldr (§=1,2,...,8) (10.23)
wi VY
\V]
Here
i o3
in = wu auvi (10.24)

where wa; (3 = 1,2,...,8) are the linearly independent solu-

tions of Eq. 10.8.

Since any compatibility relation is a linear combination
of the n original equations, Eq. 10.1, the number of independent
relations corresponding to one or several characteristic
normals N. cannot exceed n. The dependency of the various
compatibility relations can be determined by constructing the
matrix wa (j = 1,2,...,n) whose rows are the left eigenvectors
for each the relations considered. The rank of the matrix
yields the number of independent relations and the rows of the
highest order nonzero determinant show which relations are

independent.
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XI. APPENDIX B:

THE GENERAL NUMERICAL METHOD

The general numerical method utilizing the infinite
family of bicharacteristics passing through a point and having
second-order accuracy is presented in this section. The method
was originally developed by Butler (17) and later extended by
Ransom (14); the summary given below closely follows Ransom's
work.

Butler's scheme applies to probiems in which the
characteristic equation factors into a repeated linear factor
and a symmetric quadratic factor {as presented in the general
theory in Appendix A). Such problems are not restricted to
those in gas dynamics; however, the discussion here is directed

to problems in gas dynamics.
A. Parametric Representation of Bicharacteristics

A differential element of the characteristic conoid,
corresponding to the quadratic factor in the characteristic

equation, is represented by the quadratic equation [Eg. 10.14]

aTY ax, dx. = 0 (11.1)
ij i 773
where A?% = A;}. The differential vectors satisfying Eq. 11.1

lie along the bicharacteristics of the conoid. Butler (17)

introduced the following parametric representation for the
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infinite family of bicharacteristics passing through a point
dxi = (Ai + vy cosf + vy sin8) dr, (i=1,2,3) (11.2)

where 0 is a parameter corresponding to a particular bi-
characteristic and has the range 0 < 6 < 2m. The reference
vectors set {Ai, My vi} of the parameterization must satisfy
the equation of the differential conoid, Eg. 11.1. Substitu-

tion of Eq. 11.2 into Eg. 11.1 for dxi yields the condition

Al oo+ MU cos?6 + ViV sino +

i3 "Ti%3

.
-

J
(11.3)

2Aiuj cosf + 2Aiuj sin6 + Zuivj cosf® sinf) = 0

which is identically satisfied if Ai' Hy and v; are selected

such that

—AZ% Aixj = AI? ujuy = AE% v;vy (11.4)
and

A;% My = AE% Ay = A;% Hgvs = 0 (11.5)

The condition expressed by Eq. 11.5 is that the reference
vectors are mutual conjugate diameters of the cone (see
Appendix G). Equation 11.4 is a "normalization condition" on
the lengths of the reference vectors.

Consider a transformation of coordinates from the

coordinates X to a new system X; with Ai' My and v, as basis
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vectors. The equations of this transformation can be expressed

as
dxi = Ai dxl +ouy dx2 + v dx3, (i=1,2,3) (11.6)

where the endpoints of the basis vectors Ai’ My and v, are unit

points on the coordinate axes §l’ iz and §3, respectively. The
equation of the cone in the new basis, obtained by substitution

~of Eq. 11.6 into Eg. 1l.1, is

-1 - 2 -1 -2 -1 - 2
v )
Aij Ailj (dxl) + Aij “i”j (dxz) + Aij vivj (d“3,
(11.7)
+ 2871 Au. dR.A%, + 2871 ALy, A%.dR. 4 2ATY u.v, d%.d%. = 0
i Midy dxydx, i3 AqVy dxqdxg 1 MiVy 9xpdx;

This reduces to the canonical form

-1 =2, =1 = 2 _
(dk,) € + B33 (dX5)“ = 0 (11.8)

11

2 1

A (dxl) + Ay
if the basis vectors are mutually conjugate diameters of the
cone [Eg. 11.5]. The normalization condition ex
Eq. 11.4 renders a particularly simple form of the transformed
guadric equation, i.e.,
2
)

2

@z ? 4 (@)% + (@xy)% = 0 (11.9)

which is the eguation of a real cone completely enclosing the
il axis. Thus the normalization condition also ensures that

the vector Ai lies interior to the cone. There is a double
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infinity of transformations which reduce the equation of the
cone to canonical form correspcnding to the double infinity of

sets of mutual conjugate diameters of a cone (see Appendix G,

Section E).
B. Biclaracteristic Tangency Condition

In Section E, one degree of freedom in the choice of the

reference vectors Ai’ Wy and vy is removed by requiring ki to
lie along a particular direction interior to the differential
conoid throughout the (Xl' Xor x3) space.

The remaining degree of freedom in the choice of orienta-
tion of uy and Vi in the polar plane of Ai is used to satisfy

the requirement that the integrals
T
X, = X; = J (Ai + My cosf + Vi sin8) dt, (i = 1,2,3) (11.10)

for constant value of 6 define a bicharacteristic. The vertex
of the conoid, point 0 in Figure 11.1, has coordinates xg.

The vectors Ai’ My and v, satisfy Egs. 11.4 and 11.5 for the
differential conoid throughout the space and, in general, are
functions of the coordinates & and 1 on the conoid surface.
Since the equation of the conoid, Eq. 11.10, can be expressed
as x, = xi(O,T), the differential vector dxi tangent to the

ccnoid at any point is given by the equations
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WAVE SURFACE ELEMENTS

BICHARACTERISTIC

_~CONOID

N—pIFFERENTIAL CONOIDS

Figure 11.1. Orientation of reference vectors uy and vy

along a bicharacteristic of a characteristic
conoid ,
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9X. Bxi '
dx, = == df + =—= dt (11.11)

i 39 3T

the second term in Eq. 11.11 is obtained by differentiating

Eg. 11,10 with respect to 1, i.e.,

Tl Ai + oy cosf + 2 sin® (11.12)

which is a vector everywhere tangent to *he bicharacteristic
corresponding to 6. The differential conoid whose vertex is
at a point P in Figure 11l.1 touches the conoid along the bi-
characteristic. The equation of a surface element tangent to
this differential conoid (Appendix G, Section C) along the

direction Ai + My cosf + 2 sinf is

a’t oL+ uj cos8 + vy sind) dx; = 0 (11.13)

ij 73

This surface element is also tangent to the conoid surface at

P. Therefore, Eg. 11.11 must sat

1

=i

sfy Eq. 11.13; that is,

7 —— .

-1 0X

. i
A.. (AL + u. cosB + v. sinb) —— dbo
13 Ay +ouy j ) 38
-1 O
+ Aij (Aj + uj cosf + Vj sinf) 5?—-dT =0 (11.14)
0X.

If 3?5 from Eq. 11.12 is substituted into this equation and the

conditions on the reference vector set {xi, Wy vi}i Eqs. 11.4
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and 11.5, are employed, then the second term in Eg. 11.14
vanishes identically. Hence, Egq. 11.14 becomes

-1 09X,

(. + “j cosb + vj sing) =0 | {11.15)

Biy By 35

This equation is sufficient to determine the orientatiocn

cn ¢f
the vectors Qi and Vi along the bicharacteristics relative to
a fixed reference at the vertex of the conoid.
C. General Form of the Wave Surface
Compatibility Relation
The general form of the compatibility relation, Eq. 10.21,
can now be written for the characteristic wave surfaces in
terms of the bicharacteristic parameter €. The equation of a
differential element of the wave surface, tangent to the
characteristic conoid along the bicharacteristic lirection
A, + My cosf + vy sinf , is obtained from the equation of the

1

conoid, Eq. 11.1, and has the form

a7l (A; + u; cosb + v, sing) dxj =0 (11.16)

i9 i i

where the differential vector dxj lies in the wave surface.
From this result, the wave surface normal, Ni’ can be expressed
as

Ni = AI% (kj + uj cosf + vj sing) (i=1,2,3) (11.17)
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The bicharacteristic direction lies in the wave surface
and is chosen as one of the two directions of differentiation
in the general form of the compatibility relation, Eq. 10.21.

The second direction, Mi'

Mi = vi.cose -y sin® (11.18)

is picked to yield a particular form for the compatibility
relation. The orthogonality of Mi and the wave surface normal
N, can be verified by taking their scalar prcduct and using

Egs. 11.4 and 11.5.

tion is now written in terms of the bicharacteristic and Mi

directions as

du
. v
Av (Ai touy cosb + vy sinb) Bxi
auv
= r, - . 1 ‘ L]
B + Cv (vi cosB Hy sinb) 5;; (11.19)

where the coefficient Av’ B, and Cv are functions of 6, Xy
and u_ .

\

The dependence of the coefficients Av’ B, and Cv on 6 in
Eq. 11.1Y is determined by considering the wave surface

compatibility relations for the case n = 3 (i.e., a system of

three equations in three dependent variables, uv). Equation
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11.19, written for 6 = 0, w/2, w, and %1, yields
auv auv
auv auv
— - t—— !
Av(ﬂ/2) (Ai + vi) S B(m/2) Cv(ﬂ/Z) My 3xi (11.21)
Buv Guv
Av(ﬂ) (Ai - ui) 5;; = B(mw) - Cv(n) vy Bxi (11.22)
2u cu
3m _ Vo 3n 3n \)
Ay vy o= B D) T 660 vy gy (11.23)

Each of these four equations can be considered as linear
combinations of the original three equations. Therefore,

Egs. 11.20 - 11.23 are not linearly independent, and there
exists a linear combination of these equations which yields an
identity. Assume that o, 8, Yy, § are scalar multipliers of
Egs. 11.20-11.23, respectively, in the linear combination.
Since the vectors Xi’ Hyr and v; are independent, the

Buv Buv auv
PP . . .
cozfficients of the derivatives Ai 5% M 3wt and Vi 37 in

1

the linear combination must vanish. This yields the relations

« A (0) + B A (L) +yA (M + 8 2,65 =0 (11.24)
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2 A, (0) + B C (1/2) =y A (1) - 8 cv(%l) =0 (11.25)
- C (0) + 8 A, (7/2) +y C (1) -6 Av(%ﬂ) =0 (11.26)
o B(O) + B B(n/2) + v B(T) + & B(%l) =0 (11.27)

Also, any three of the equations, Egs. 11.20 through 11.23,
are equivalent to the original system of differential equations

and therefore must have the same characteristic surfaces, This

condition yields the additional relation

@ €, (0) + B C (1/2) +y C (n) + & cv(%ﬂ) =0 (11.28)

Equations 11.24-11.28 are not only conditions on the numbers
o, B, Y, and § but also (as to be shown later) on the
dependence of Av’ B, and Cv on the parameter 6.

The 6-dependence of the coefficients Av’ B, and Cv is
obtained by multiplying Egs. 11.20-11.23 by the factors
a(l + 2 cos®), f{(-1-2 sinB), vy{(1L - 2 cosB), and 6§(-1 + 2 sind),
respectively, and summing. This particular combination has
the property that the correct 0-dependence of the directional
derivatives results, and for 9 = 0, w/2, ™, and EE, Egs. 11.20-

2
11.23 are reproduced.
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After considerable rearrangement of terms in the summation
equation just described and use of Egs. 11.24 through 11.28,
the general form of the wave surface compatibility relation,

Eg. 11.9, is obtained in which the coefficients have the

following form

A, = Alv + A, cosb + Ag, sin® (11.29)
B = Bl + B2 cosb + B, sinb (11.30)
Cv = Clv + C2v cos6 + C3v sinb (11.31)
in which
A, = o A (0) - 8 A (1/2) +y A (M) -6A (T (11.32)
Ay, = 2[a A (0) = y A {m)] (11.33)
Ay, = =208 A (1/2) - 6 A (3D)] (11.34)
c;, = 2[a C (0) +yC (m)] (11.25)
Cpy = =Aq, (11.36)

C3y = By, (11.37
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B, = o B(0) - B B(1/2) + y B(1) - & B(%E) - (11.38)

B2 = 2[a B(0) - v B(m)] (11.39)
37

By = =208 B(1/2) - § B(3D)] (11.40

The dependence of the coefficients Av’ B, and Cv on 8 is shown

explicitly in Egs. 11.29-11.31.

D. The General Form of the

A4

Noncharacteristic Relation

In the general numerical methéd, a noncharacteristic
relation formed by taking a particular linear combination of
the original differential equations is employed. This equation
is obtained by multiplying Egs. 11.20-11.23 by o, -8, Yy, and
-8, respectively, and summing. After fearrangement and use of

Egs. 11.25 and 11.26, the equation

Ju Buv Buv
A 2 — = C — - . me—— Il1.4l\
“lvti 9x. By * CouVs 3%, C3vu1 oX. v !
i i i
is obtained, where the coefficients Alv' Bl’ CZv' and C3V are

given in the preceding section. This equation is used in the
elimination of cross derivatives of the dependent variables u

at the solution point in the numerical scheme.
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E. The Second-Order Numerical Scheme

In the numerical solution scheme, an inverse network is
used in which the solution point with coordinates X, = o is
fixed, and the bicharacteristics through the solution point
are projected back into the noncharacteristic initial data
surface, f(xi) = 0. It is assumed that the base points at the
intersection of the bicharacteristics and the initial data
surface can be located to second-order accuracy using Eq. 11.2,
and that second-order accurate estimates of the dependent
variables u, can be obtained at these points. Equations 11.12
and 11.41 are then used to determine u, correct to second-
order accuracy at the solution point G-

Equations 11.1% and 11.41 can be written in operator

notation as

A1
ol

- - : — ,42
AvdLuv [B + C\)(\).l cosH My sind) axi ] dr (11.42)
and
Buv
Alvdkuv::[Bl + (CZvvi - C3vui) 5;; ] dt (11.43)

where L denotes the bicharacteristic direction, Li’ and A the
Ai direction. Bicharacteristics through oy meet the initial
data surface f(xi) =0 at 1 = -1(6). Thus Egq. 11.42 written
in finite-difference form along the bicharacteristics, using

the modified Buler scheme (ref. 61), is
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A, fu (a) - u ()] = (B + ¥[S(a) + S(HI} t(8) + 0(°) (11.44)

where
Buv
S = C\)(vi cosf - My sinb) T (11.45)
Rv = %[A (a) + A (f)] (11.46)
B = ¥[B(a) + B(f)] (11.47)

The notations uv(a) and uv(f) are used to denote the dependent
variables at the solution point Gy and at the base points on
the surface f(xi) = 0, respectively. The quantities uv(u) and
uv(f) in Eq. 11.44 have been assumed correct to order T2, and
B, S(a), and S(f) to order t. The quantities iv need only be
correct to zeroth order in T.

The direction of Ai is now chosen such that Clv =0

thrcugheout the (xl, Xy x3) space. (This condition is
satisfied in two-dimensional unsteady, and three-dimensional
steady supersonic flows in gas dynamics with Ai directed along
the axis of the characteristic cone.) The vanishing of this
coefficient is required to eliminate the cross derivative

terms at the soluti

Eq. 11.44, s(a) is then given by

o . _ . v
S(a) = (CZv cosf + C3v 51n6))(\>.1 cosb Uy sin®) §§; (11.48)
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au ou

\V v
where C2v"c3v' vi Y and ui 3;; are evaluated at xi = ai.

In order to maintain second-order accuracy in the

au au

. \ . v
numerical scheme, the cross derivatives, vi R and My !
i i

appearing in Eq. 11.48 must be evaluated or eliminated. In
any explicit scheme these terms cannot be evaluated until after
the entire solution surface is solved. Butler (17) eliminated
these terms by using weighted integration of the infinite '
number of wave surface compatibility relations which exist at
a point.

Consider Eg. 11.44 weighted first by the factor
f(a) cos6/T1(6), and then by f(a) sinb/t(6); these resultant
equations integrated with respect to 6 bet&een limits 0 and 27

give

2m fla) A cosH 2 £(a) u (£f) A cos6
v 46 = J v v

u, (o) J - T(8) T(8)
0 0

dad

o]
27 z

+ X J f(a)S(f) cosb do + j f(a)B cosb de + 0(f3(a)) (11.49)
0 0

and
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2T ¢ (a) A, sing [Zﬂf(a)u\)(f) B, sind
u\) (u) J T(e) de = ) T (e) de
0 0
2T 2T
+ X I f(a)S(f) sinb a6 + [ f(a)B sinb 48 + 0(f3(u)) (11.50)
0 0

where f(o) is the evaluation of the function f(xi) at the point

A third condition on uv(a) is obtained by considering the
noncharacteristic relaﬁion, Eq. 11.43, written along the
curve dxi = Aidr inside the characteristic conoid. Suppose
that the curve dxi = AidT through X; =0y meets the initial
data surface at t = -h. Let the value of u_ at this point be

v
denoted by uv(h), Then, using the modified Euler scheme, the

* ‘—* ( Bu\) Bu\)}
Ayyluyla) = u,(R)1=h |B, + %(C2vvi 0%y CavMi T
L i
r Buv Buv~ a 3
* Jﬁlczv"i 5%, Cavli a'x'."J" . J + 0(h7)
i i’T = =h
(11.51)

where

*

Ay, = k1A (ol + Ay ()] (11.52)
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= %[B, (a) + By (h)] (11.53)

Equation 11.44 is weighted by the factor h/t, and integrated
with respect to 6 from 0 to 2m. Then Eq. 11.51, multiplied by

T, 1s subtracted from the integral of Egq. 11.44 to yield

" nR . 2T hu (£) A
u\)(a) JO m) de - m Al\) = J W— de - 7 Al U.\) (h)
- 0

2T
1 " e r - Th . au\) Bu\‘—l
t 3] BS(E) 48 - 5= Gy vy 3%, CayHi :ﬁ‘i‘JT

0 = -h
27
- * 3
+ hB 46 - ﬂhBl + 0(h™) (11.54)
0

Note that Egs. 11.49, 11.50 and 11.54 do not depend on the
derivatives of the dependent variables at the solution point;
hence, they provide a basis for an iterative scheme which
determines uv(a) correct to 0(h2). Equations 11.49, 11.50,
and 11.54 are the necessary three independent equations for
the dependent variables, uv(a), when n = 3. If n > 3, it is
assumed that the additional n - 3 conditions needed to form a
complete system of equations can be obtained from the

compatibility relations written on flow surfaces.
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In practice, the integrals with respect to 6 in Egs.

11.49, 11.50, and 11.54 are replaced by sums over the four

ou
3 o Vv
salues 6 = 0, /2, m, and 5 Initial values of U, By 3;;
auv
and Vi §§I on the surface f(xi) = 0 at the intersections of

the four bicharacteristics and the curve dxi = AidT are
determined by intepolation among sets of known points on the
surface. If it is sufficient to obtain a solution correct to

2u ou

3;2 and vy 5§2 in Egs. 11.49,
i i

0(h}), the terms containing My
11.50, and 11.54 can be neglected since these terms are of

order h2 in the finite-difference form of the compatibility

relation, Egq. 11.44.
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XII. APPENDIX C:-
FINITE-DIFFERENCE FORM OF THE

BICHARACTERISTIC TANGENCY CONDITION

In order to maintain second-order accuracy in the
numerical solution scheme (Chapter III), the bicharacteristic

tangency condition Eq. 3.9

90X,
. 1 . .
(aicose + Bi51n6) 55 0 (1 =1,2) (12.1)

must be satisfied to second-order accuracy. The finite-
difference approximation of Eq. 12.1, developed in this section,
yields conditions on the reference vectors ui(k), Bi(k)
(k = 1,2,3,4) at the intersections of the four bicharacteristics
corresponding to 6 = 0, m/2, m, 31/2 and the initial data
plane. The eqguations for ithe reference vector components are
written in terms of a fixed reference for ai(6) and Bi(6) at
the solution point (6). ;

X,

The difference approximation for the derivative §§L in

Eq. 12.1 is found by first integrating the bicharacteristic

equation, Eq. 3.3, i.e.,

t
xi(e,t) - xi(6) = J (ui + a cosh o + a sin6 Bi)dt

o}
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where t = 0 corresponds to the solution point (6) at the
vertex of the conoid. The integral above, correct to O(tz),

is determined using the power series expansions for Uir Oy Bi

and a about the solution point (6),

u, =, (6) + u(0)t + 0 (t2) (12.3)

o; = o, (6) + o (B)t + 0 (t2) (12.4)
2

B, = 8,(6) + 8. (0)¢ + 0(t?) (12.5)

a= al6) + a(d)t + 0(t?) (12.6)

where numbers in parentheses indicate evaluations of functions
at corresponding network points. Also, thes gimplified notation

au,
i

ui(e) = 5% , etc. is used for the coefficient of the first-
t=0

order terms of the expansions. If Egs. 12.3-12.6 are sub-

stituted into Eg. 12.2 and the resulting equation integrated,

we get

xi(e,t) - x; (6) = {ui(6) + a(6) [ai(6) cosf + Bi(G) sinb]} t
1. .. 1N Y X r,otan a8 o4 oa TR s A
+ % 1g;{8) + a{®) {«;{6) cost + B,{6) sind]

+ a(6) [ai(e) cosfb + si(e) sin6]l} t2

+ 0t (12.7)



158

)

X

An approximate expression for the derivative §§£ obtained by

JArfferentarating Eq. 12.7 with respect to 6 is
0x,
35 a(6) [81(6) cosf - ai(6) sinf] t
+ % {u'i(e) + a' (o) [a; (6) cosf + Bi(6) sinb]

+ af(0) [Bi(6) cosb -,ai(6) sin6]

+ af{6) [ei(e) cosb - ai(e) sinb

+ Bi'(e) sinb + oci'(e) cos6]} ‘c2

+ oo (12.8)

where the primes denote differentiation with respect to 6.
To complete the numerical approximation of the bicharacter-

istic tangency condition, the power series expansions for ay

and Bi’ Egs. 12.4 and 12.5, and the approximation for
9X,
i

5 Eg. 12.8, are substituted into Eg. 12.1. 1In the resulting

equation, products are expanded and terms are collected in
powers of t. These terms must vanish for all values of t:
therefore, the coefficients of powers of t must vanish
individually. In maintaining second-order accuracy only the

coefficients of terms up to O(t3) need be investigated. No
00X,

. . i
zeroth-order terms result since the expression for T

is

homogeneous in t.
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The coefficient of the first-order term in t, equated to
zero, yields
a(6)[ai(6) cosf + Bi(6) sin@][Bi(G) cosf - ai(6) sin6]=0 (12.9)

Substitution of the orthonormal properties

aiBi =0 (12.10)
a0, =1 (12.11)
11

BiBi =1 (12.12)

evaluated at (6) into the expanded form of Eg. 12.9 yields an
equation which is identically satisfied. Hence, no condition
un the reference vector variation along a bicharacteristic is

necessary to maintain a first-order approximation of the

tangency condition.

The coefficient of the second~order term in t, equated to

zero, yields
a(6) [ai(e) cosf + si(e) sinel[Bi(G) cosf - ai(s) sindl
+ %lo; {(6) cost + B, (6) sinf]
x {u}(6) + a'(d) [, (6) cos® + B, (6) sinb]
+ al(B) [B,(6) cosh - ai(G) sinb]
+ a(6) [B8,(8) cosb - o, (8) sind

+ Bi(e) sinf + ai(e) cosB}} =0 (12.13)
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Expansion of Eq. 12.13 and utilization of the orthonormal
properties of the reference vectors, Egs. 12.10 through 12.12,

yields
a(6) [o,;(8) cosd + B,(0) sinb][B; (6) cosé - a, (6) sinb]
+ % {ul(8) [a,(6) cosb + B, (6) sind] + a’ (o)
+ a(6) [ai(G) cosf + Bi(6) sin@]
X [Bi(e) cosf - ai(e) sin®

+ Bi(e) sinf + ai(e) cosbl} = 0 (12.14)

The power series expansions for oy and Bi, Egs. 12.4 and
12.5, and the crthonormal properties, Eqs. 12.10 and 12.12,

yield approximate conditions which can be used to further
simplify Eq. 12.14. Consider the scalar product 0,05 In

terms of Eq. 12.4, we can write
ooy = o (6) o, (6) + 2 o (6) a;(6) t + 0(t?) (12.15)
or, with substitution of Eq. 12.11
1=1+2a,(6) a;(8) t + 0(t%) (12.16)

From this result we get a zeroth-order approximation for the

product ai(6) ai(e), i.e.,

ai(G) ai(e) =0+ 0(t) (12.17)
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This relation need only be correct to zeroth-order in Eq.
12.14 since Eq. 12.14 is the coefficient of t2 in the series

approximation to Eg. 12.1. Similarly, we can write

Bi(6) Bi(e) =0 + 0(t) (12.18)

and

a; (6) 8;(8) = - B, (6) o (8) + 0(t) (12.19)

The derivatives of Egs. 12,17 through 12.19 with respect to 9

are

ai(6) ai(e) =0+ 0(t) (12.20)
Bi(6) Bi(e) =0+ 0(t) (12.21)
ai(6) Bi(e) = - Bi(6) ai(e) + 0(t) (12.22)

Expansion of Eq. 12.14 and substitution of 12.17-12.22 yields
) .
aﬁﬁ; B, (6) a; (8)
+ [a; (6) cost + B, (6) sinb] ui(6) + a'(6) = 0 (12.23)

In order to evaluate the derivatives u; (6) and a'(8) in Eq.
12.23 we again employ the power series expansions. The
derivatives of Egs. 12.3 and 12.6 with respect to 6 are

au.

N _ 1
u; (6) = 73

1

E] + 0(t) (12.24)
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a' () = %5 [%] + 0(t) (12.25)

The derivatives with respect to 6 in Egs. 12.24 and 12.25 can

be expressed in terms of spatial derivatives by the chain rule

as
32£-= Efi-ifi (12.26)
76 " 7%, 98 :
da_da %y (12.27)
EL:) xj 98 )

According to Eq. 12.8 we can write

55— = a(6) [B,(6) cosé ~ o, (6) sin] t + 0(t?)

(12.28)

Substitution of Egs. 12.26-12.28 in Egs. 12.24 and 12.25 yields

Qa1
ol S

_ - . i
ui(e) = al(6) [Bj(G) cosh aj(6) sinb] 3;; + 0(t) (12.29)

joN

fu

a' (8) = a(6) [B;(6) cos6 ~ a,(6) sino] %g— + 0(t) (12.30)
J

Since the expressions for ui(e) and a'(8) need only be correct

ou,
to zeroth-order in t in Eg. 12.23, the derivatives §§£ and %%—
i =3

in Egs. 12.29 and 12.30 are evaluated at the solution point on

the initial data surface without affecting the order of the
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approximation. Substitution into Eq. 12.22 for u'(6) and a'(6)

from Egs. 12.29 and 12.30 gives

B;(6) a;(8) + [a;(6) cos® + B.(6) sinf]
au.
X [Bj(6) cnsf - aj(6) sinf] —=

+ [85(6) cose - @5 (6) sind] 28 _ 9 (12.31)

The scalar product of the power series expansion for Y

Eq. 12.4, and the vector 81(6) yields

B, (6) a; = B, (6) o (6) + B,(6) a;(6) t (12.32)

where the higher order terms have been dropped. According to
Eg. 12.10 the first term of this equation is zero. Hence, we

can rewrite Egq. 12.31 as

Bi(6) qi = =D(8) t (12.33)
where
D(6) = [a;(6) cosb + Bi(6) sinb]
oy
x [Bj(6) cosf - aj(G) sin6] 5;;
+ [Bj(6) cosf - uj(6) sing] da_ (12.34)



Egquaticon 12.32 is cone equation for the two components of a,.
The other relation needed is Eg. 12.11. Elimination of a, from

Egs. 12.33 and 12.11 yields a quadratic equation in o The

l.
correct solution for oy is

4y = -D(6) 61(6) t + ul(6) (1 - D2(6) t2]15 (12.35)

This equation can be verified by letting t go to zero since oq
at the base point must approach o,(6) in the limit. The other
component, o,, is found by eliminating a, between Egs. 12.33

and 12.35, with the result

o, = =D(8) B,(6) t + a,(6) [1 - D?(0) t21%  (12.36)

After the components ai(k) (k =1,2,3,4) are established at

the bicharacteristic base points, the components 8, (k) are

[ Sad

A ArbElhAarnAvmmaTl cmemac Al S A -
N Nt o N d NS
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XIII. APPENDIX D:

NUMERICAL STABILITY ANALYSIS

Stability of the numerical scheme for solution of a
system of differential equations is a property of the differ-
ence equations which are used as approximations of the
differential equations. There does not appear to exist a
universal definition for stability, but the most common con-
cept is that of stepwise stability which refers to the bounded-
ness of the numerical solution as t +» » for fixed time incre-
nent, At. Many criteria exist for testing stability, and a
good discussion of the methods is given by Roache (68). All
stability criteria which presently exist were developed for
linear difference equations. For the case of nonlinear
equations, the approach taken is to linearize the difference
equations and to apply the same criteria locally.

In this section the Courant-Friedrichs~Lewy (CFL) and
von Neumann stability criteria are applied to the interior
point numerical algorithm developed in Chapter III. The CFL

criterion is a necessary condition for stability and states
that the differential domain of Ade
convex hull of the difference scheme. This condition sets an
upper'limit on the time increment which can be taken in the
interior point algorithm. The von Neumann criterion states

that a difference scheme is stable only if there is a limit to

the extent that every Fourier component of the initial data is
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amplified by application of the diffsrence scheme. In
application of the von Neumann criterion to the numerical
method, all aspects of the scheme including interpolations for
initial data must be considered. However, to show the effect
of interpolations on the stability characteristics of the
scheme, the difference scheme was first analyzed in two parts;
(1) the basic scheme (without interpolation and using exact
data at base points), and (2) the initial data interpolation
scheme alone. The basic scheme was détermined to be unstable
for all time increments while the interpolation scheme was
found to be stable. Finally the difference scheme (with
interpolations for initial data) was analyzed and found to be

stable when the CFL criterion was satisfied. These results

show the stabilizing influence that interpolations have on the

scheme.

A. Courant-Friedrichs-Lewy Stability Criterion

ourant-Friedrichs-Lewy {(CFL} stability critericn
(ref. 16) states that the domain of dependence of the differ-
ence equations, defined as the convex hull of the points in
the initial data surface used in the difference scheme, must
contain the domain of dependence of the system of differential
equations. The convex hull of the difference scheme, shown in
Figure 13.1, is the boundary of the union of lines joining all

pairs of the nine mesh points used for interpolation in the
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CONVEX HULL OF
DIFFERENCE SCHEME

D!rFERENTIAL DUMAIN
OF DEPENDENCE

S INITIAL DATA
SURFACE
O

a. View showing bicharacteristics, particle path, and
convex hull of difference scheme

CONVEX HULL OF
/ DIFFERENCE SCHEME

b. Projection onto initial data surface showing differential

domain of dependence and convex hull of difference scheme

Figure 13.1. Pentahedral bicharacteristic line network for
two-dimensional unsteady flow
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initial data surface. Th~ differential domain of dependence
is. for the case of steady, uniform flow, a region bounded by

a circle of radius aAt concentric about the intersection of the
particle path‘and the initial data Surface, point (5) in

Figure 13.1.

The CFL criterion will always be satisfied if the maximum
distance from the solution point, point (6), to a point on the
boundary of the differential domain of dependence, (Iuil+a) At,
is made less than or equal to the minimum distance tc the

convex hull, riin in Figure 13.1. Expressed in terms of the

Courant number, C,

(lug|+a) ot _
C = , (13.1)
r .
min
the condition is
C < 1.0 (3.0

This is a condition on the maximum time step which can be
taken in the numerical integration and must be satisfied at
all mesh points.

The above analysis was based on steady. uniform flow
throughout the region of interest. In the general case, the
differential domain of dependence is noncircular due to

property variations. Hence, a better estimate of the maximum

time step is given by the relation
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r_.
min
= (13.3)
max (Iui|+a)max

t

where (|ui]+a)max is the maximum value of that quantity
evaluated at all mesh points of the nine-point cell. After
solution for the dependent variables at point (6), Eg. 13.3
is again checked using the data at the solution point. Note
that the maximum time step permitted by Eg. 13.3 is a con-
servative estimate since no accounting is made of the location
of the differential domain of dependence within the convex hull
(which depends on the flow angle 0).

The CFL stability criterion is a necessary condition for
stapility. Hahn (69) has determined that the CFL criterion is
also a sufficient stability condition for simpliecigzl ne tworks.

e

Networks are termed simplicial if L + 1 bicharacteristic base

-
-

-~ A2
Ml “

~ .~ e P SR - A e el A o -
3 art usce Ol ainl iliildlias Gada suliace QL dLrinensioll L.

For problems in three independent variables, simplicial net-

works involve three bicharacteristic base points. Thus,
field point network, involving four bicharacteristic base
points, is nonsimplicial, and the CFL criterion is not a
sufficient condition for stability. Difference schemes based

on rnonsimplicial networks must satisfy other criteria to

ensure stability.
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B. von Neumann Stability Criterion

The vor Neumann condition (ref. 15) states that a dif-
ference scheme is stable only if there is a limit to the extent
that every Fourier component of the initial data is amplified
by application of the difference scheme. This condition
requires that the spectral radii, p(d), of the amplification

matrix A of the difference equations satisfy the inequality
p(A) < 1 + O(At) (13.4)

for all possible combinations of the Fourier components
occurring in a Fourier series solution of the difference
equations (ref. 29).

Lax and Richtmyer (70) have shown the von Neumann condi-
tion to be a sufficient condition for the stability of linear
difference eguations onlv. However; the von Neumann

has appeared to be sufficient for all nonlinear as well as

linear schemes which are known to have been investigated

(ref. 29).

1. Linear difference equations

In order to apply the von Neumann condition the differ-
ential characteristic relations must be linearized. The
system of differential equations for unsteady f£low consists of
the wave surface compatibility relation, Eg. 3.11, applied

along the four bicharacteristics, the noncharacteristic
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relation, Eg. 3.22, written along the particle path, and the
particle path compatibility relation, Eq. 2.32. However, the
particle path compatibility relation is coupled to the remain-
ing equations only through the coefficients, and therefore not
needed in the linear analysis. The remaining five equations,

written in terms of the directional differential operators, are

s 3 a¢ =
dL p+oa ajdL uj +p a BjBi prs dt = 0 (13.5)
1 1 i
2 au.
dL p+ooa BjdL uj +p a ujai 5;; dt = 0 (13.6)
2 2 i
2 au. '
dL3p - p a ajdL3uj + p a BjBi 5;% dt = 0 (13.7)
2 Ju.
d. p-op aB.d u, +pa‘e.a =—Ldt=0 (13.8)
_'4 J .a-a'4 J J e UAi
2 Ju.
do + 0 a“(o.a, + 8.8.) —L dt = 0 113.9)
U= i i Xs

where the subscripts L.l (i =1,2,3,4) and U denote the four

bicharacteristics and particle path, respectively. Elimina-

Ja.
tion of the terms involving the derivatives ajai 3;1 ana
i
au.

BjBi 531 from Egs. 13.5-13.9 yields the following system of
i

three independent equations:
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Llp - dL3p +p a “j(d.luj + dL3uj) = 0 (13.10)
szp - dL4p + p a Bj(szuj + dL4uj) = 0 (13.11°
dLlp + dLép + dL3p + dL4p - 2 dUp

+ p a [aj(dLluj - dL3uj) + Bj(szuj -‘dL4uj)] =0 (13.12)

In the linearization process, the dependent variables are

assumed to be represented by

u=u-+ i (13.13)

where u represents any variable, u the mean value (a constant)
and & a small perturbation (ii<<u). Substitution for the

dependent variables in terms of Eg. 13.13 into Eqs. 13.10-

13.12 gives

d p-d p+paa.(d . +d d.) =0 (13.14)
Ly L3 17y k3l

d, P -da P+ padep.(d 9. +d U) =0 (13.15)
L2 L4 3 b2 3 L4 3

+
ko]
")
Q
—
fo)
tt
o
!
o
for
+
jor]
o
)
i
o
t
o
.
i
o

(13.16)

where higher order terms have been neglected. Next, using the
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modified Euler scheme, we replace the differentials in Egs.

13.14-13.16 by differences to obtain

w1
R
i)
o
fo)
1
o
——~
l._l
A
I
o
w
]

p(3) - p(l) + p 0 (13.17

P(4) - D(2) + p a

o
™
Y
o
o
1
o)
o
i
o
1Y
nd
1]

0 (13.18)

2 p(6) + 2 p(5) - p(1l) - p(2) - P(3) - pl4)

+p a {aj[uj(3) - uj(l)] + Bj[uj(4) - uj(2)]} =0

(13.19)

where the numbers in parentheses denote points in the character-

istic network.

2. ©Stability of the basic difference scheme

The von Neumann stability analysis must include all

aspects of the numerical algorithm, including inter

u
(
"3

and the basic difference equations. However, to illustrate
the stability characteristics of each of these operations, the
basic difference scheme and the interpolation scheme are
studied individually. Following these studies, the overall
algorithm including both the basic difference scheme and inter-
polation scheme is analyzed.

Before analyzing the basic difference scheme, it can be
seen from Figure 13.2 that the differential domain of

dependence extends outside the convex hull of the difference



DIFFERENTIAL DOMAIN = Ax ]
OF DEPENDENCE

Ax

CONVEX HULL OF
\ . DIFFERENCE SCHEME

Figure 13.2. Basic difference scheme network in initial data
surface. Differential domain of dependence and
convex hull of difference scheme
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scheme. Hence, according to the CFL stability criterion, an
unstable result is expected.

It is assumed that an analytical solution of the system of
linear difference equations can be obtained by separation of
variables (ref. 29). For the purpose of stability analysis it
is sufficient to examine the solution for only one arbitrary
component of the Fourier series representation of the initial
data. The complete solution is obtained by superposition of
all such terms necessary to represent the initial data. The
form of a general term is assumed to be

X X

: . 2
U= elm L elm L T (t) (13.20)
where
_ﬁl_] _Ul(t)j
U=\ u, T(e) = | U, (e
Li | P(t) |

The frequency indices m and n are for the particular Fourier
components in the X and X, directions, respectively, L is a
characteristic length such that Xq and X, have the range -L to
L, and T(t) is a vector function of the variable of integration,

t°

To simplify the analysis, the reference vectcrs &i and Ei



~1
(<))

With this orientation of &i and éi’ the linearized difference

equations, Egs.

5(3) - p(1) +

p(4) - p(2) +

The

the

p(6) + 2 p(5)

+poally(3) - 4(1) + 8,(4) - §,(2)1 = 0

~

af2 ul(6) -

a

13.17-13.19, become

L) = & (3)]

a[2 4, (6) = 0,(2) - 4,(4)]

- p(1) - p(2) - p(3) - p(4)

~

(13.21)

(13.22)

(13.23)

coordinates of the base points may be written relative to

coordinates of point

Point (1):

Point (2):

Point (3):

Point (4):

xl(l)
xz(l)
xl(2)
x2(2)
Xl(3)
x2(3)

xl(4)

x2(4)

]

(6) as (see Figqure 13.2)

xl(6)

x2(6)

xl(6)

X, (6)

2(
xl(6)
x2(6)
x1(6)

x2(6)

a)

At

a) At

At

At



Point (5):

xl(S)

x2(5)

177

- GlAt

xl(6)

x2(6) - uzAt

The assumed form of the solution, Eq. 13.20, evaluated at each

of these network points yields

imm xl(G)
U(l) = e L

imm iliil
T(2) = e L

' xl(6)
_ imm —
U(3) = e - L

imm xl(6)
U(4) = e L

.o x o 8)

_ imm lL
U(5) = e

. xl(6)
_ T
U(e) = e L

inm

inTm

inm

inm

inm

x,(6) _. _ B
"Zi‘" S(u+a)ee TERRL At _
(e e JT(t(6)-At)
(13.24)
x,(6) _. __ o - -
2L lIﬁnulAt E%ﬂ-(u2+a)At _
(e e YT (t(6)=-At)
(13.25)
x,(6) _. - BT
ﬂzf—— £I—IT:-IT-(ul-a)At E%ﬂ-uZAt _
(e e YT (t(6)-At)
(13.26)
X,(6) . s -
2L lr{jﬂulAt £§£(u2-a)At -
(e e YT (£ (6)-At)
(13.27)
x2<5) 3 - 3 -
(e e Y T(t(6)-At)
(13.28)
x2(6)
L

T(t(6)) (13.29)
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Equations 13.24-13.29 contain the common factor
imm inmw
To*% (6 T %0
e e

and the difference equations, Egs. 13.21 through 13.23, are
homogeneous in the dependent variables; thus the common factor
may be eliminated. Substitution for the respective dependent
variables from Egs. 13.24-13.29 into the difference equations

Egs. 13,21-13,23 yields

-ig, -id,
Ul(t(6)) -e e [cos¢lUl(t(6) -At)
-i =L sing P (t(6) -at)] = 0 (13.30)
p a
“idy -idy
Uz(t(6)) - e e [cos¢2U2(t(6) -At)
i == sing,p(t(6) ~4t)] = 0 (13.31)
p a ’
-i6, -i¢,
P(t(6)) + e e (1 - cos¢l - cos¢2) P(t(6) -At)

+1ipa (sin¢ U, (£(6) -At) + sing,U,(t(6) -At))] = 0 (13.32)
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where
4 = - a bt (13.33)
9, = %1 a At (13.34)
45 = T 0t (13.35)
by = %1 u,ht (13.36)

In matrix notation, Egs. 13.30-13.32 can be written as

U(t(6)) + A T(t(6) =-At) = 0 (13.37)

where the matrix A,

—cos¢l 0 i 51n¢1 —1
voa |
-i¢, =~i¢
A=ce 3 e 4 0 —cosd>2 i :l: 51n¢2 '
p a
ip a sing, i 0 a sing, (l-cos¢; - cos¢,)

(13.38)
is called the amplification matrix of the system of difference
equations.

The von Neumann stability criterion, Eq. 13.4, requires
that the eigenvalues of the amplification matrix satisfy the

lnequality

Al <1+ 0(at) (13.39)
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where ) is any of the three roots of the determinantal equation
A - 1] = 0 (13.40)
Expansion of Eqg. 13.40 yields the third-order polynomial

sin2¢l(cos¢2 - A') + sin2¢2(cos¢l - AY)

+ (cosqml + cosd)2 -1+ x')(cosqbl + )\')(cos¢>2 + A') = 0 (13.41)

A = e e A (13.42)

The transformation in Eq. 13.42 does not change the magnitude

of the eigenvalues, i.e.,

Hence, the magnitude of the eigenvalues of the amplification
matrix can be obtained directly from Eq. 13.41. If as shown

in Figure 13.2,

px = (Ju;] +a) At

then the angles ¢l and ¢2 in Eq. 13.41 can be reexpressed,

accerding to Egs. 13.33 and 13.34, as
_ mr_ Ax
¢l = T I (13.43)
_ nm  Ax
¢2 e (13.44)
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where M is the Mach number.

The spectral radii (|k[max) of the amplification matrix
were calculated from Eq. 13.41 for all combinations of angle
sets {¢l,¢}, {¢,¢2} for which |¢l[ < ¢, |¢2| < ¢. The results

of the eigenvalue calculation are shown in Figure 13.3 with

the spectral radii plotted versus the frequency index

ﬁ'?

s
M+1
where

I= (M+ 1) %{-% (13.45)

The spectral radius, for this case, is an even periodic func-
tion of frequency index; hence, only the results of the

calculation for the range of L Ax from 0.0 to 1.0 are

M+1 L
presented.

As expected; the basic difference scheme is unstable by
the von Neumann criterion for all values of frequency index.
This is due to the direct violation of the necessary CFL

stability criterion when the differential domain of dependence
is not contained within the convex hull

schemne.

3. Stability of interpolation scheme

The interpolation scheme developed in Appendix H to

cbtain the dependent variables at base points in the initial

data surface must be considered in the overall stability
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Figure 13.3. Spectral radius of amplification matrix versus
frequency index for basic difference scheme
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analysis. However, the stability characteristics of the inter-
polation technique can be determined by treating it separately
befcre coupling it with the difference equations. The approach
used here is to consider the interpolation scheme as smoothing
process and to analyze the stability of such a scheme.

The analysis is simplified without loss of generality by
assuming a square cell of nine points with mesh spacing

Ax, = Ax

1 o = bOx centered about the point (6') which is the solu-

tion point (6) for the previous time plane, as shown in Figure
13.1., Point (6'), is taken as the origin of the coordinate
system. A general term of the Fourier series representation
cf the values to be interpolated on the initial data surface

is given by Eq. 13.20 as
X, X
U 2, 0 =e " e ¥ ) (13.46)

The corresponding values of the dependent variables at each of

the nine cell points are

= AX  AX

U= =50 0) = £n T(0) (13.47)
ﬁ(%, 0, 0) - £ T(0) (13.48)
T I - 1) (13.49)

G, é%, 0) = n T(0) (13.50)



where

U0, 0, C)

1

It

84

1T
= e

T(0)

n ~ T(0)

(13.51)

(13.52)

(13.53)

(13.54) -

(13.55)

(13.56)

(13.57)

The least squares system of equations, in Appendix H, evaluated

for this cell of interpolating points is



6 (‘-%)2

Ax, 2

6 (—f)

(€

—~
Y

(€

(g

(€

+

+

+

0 0
6 (52 o
0 6 (%2
0 0
0 0
0 0

el v i+t 1) |

-1 -1

r A S . .
¢ Jin T on +

|
C—-
—_—

e+ )(n - nh

£ (- n7h (2

e+l 1)

el o+ n o
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o 6 (52 6 Y2
0 0 0
0 0 0

1 252 o 0
0 6 (B 4 B
o 4 (B ¢ &

cl%

Ax

T
o

Ax, 2

T

Ax, 2

L

)

/

)

T\)(O)

(v =1,2,3)

(13.58)
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Solution for the polynomial coefficients auv (0 =1,2,..

v =1,2,3) in Eq. (13.58) yields

a,, = [5/9 €+ &+ D+t +1

—13 v e et

S 1/3 €+ £+ D+ HIT (o)

I>|L““
"

(1/6 (€ = €5+ "t + DT (0)
a3, = 3 11/6 (£ + €75+ (0 - n DT (0)

ay, = &°11/4 € - £H (- a7hiT ()

L2, -1 -1
ag, = (KE) [- 1/3 (£ + ¢ + 1)(n +n + 1)
- -3, . - e
t /4 (5 ¢ )n +n + -L).ll'\)lU)
L 2 - -
ag, = 2713 @+ et nm et e

+1/2 €+ €5+ D+ nHIT (0)

.63

(13.59)

(13.60)

(13.61)

(13.62)

(13.

(o)
Lo
~-

(13.64)

Since the coefficients apv are homogeneous in Tv(O), we can

write the least squares polynomial for the dependent variables,

de..oted U', as



X, X X b X, X
_|__l___g_ — [ ] l__l-_ l__Z‘_ |—!.__-2__
U(L,L.O)—[al+a2 ($7) + a3 (£7) + ay (£9) (57

X X
|_12 -_22"
t ag (L)+a6(L) 1T (0) (13.65)
where aL (u=1,2,...,5) are the coefficients of Tv(O) in

Eqs. 13.59-13.

In order
interpolation
values of the

from the poly

The previous

are given by

Hence, there

this process,

64.
to examine the stability characteristics of the
scheme, consider a process in which the new

degendent variables at point (6') are calculated

1 X

nomial, Eg. 13.65, with x =0, i.e.,

2

U'(6') = aj T(0) (13.66)

values of the dependent variables at point (6')

Eg. 13.46 with x, = Xy = 0, i.e.

1
U(6') = T(0) (13.67)
66 and 13.57 we can write
U'(6') = aiU(G') (13.68)

is only one amplification factor or eigenvalue for

i.e.,
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-1 1

o= al = [5/9 (& + ¢ +1)(n+n =+ 1)
-3+ e hHmen e
-1 -1
- 1/3 (¢ +& "+ 1)(n+n )] (13.69)

In terms of the angles ¢l and ¢2, defined as

_ Ax
¢1 =mn == (13.70)
_ Ax
¢2 = nm —% (13.71)
Eq. 13.69 can be reexpressed as
A= 4/9 [5/4 + (cos¢l o cos¢2) - cosdy cos¢2] (13.72)

The value of A in Eg. 13.72 was calculated for all combinations
of angle sets {¢;, ¢}, {¢, ¢,} for which [¢1| < b, l¢2l < 9.
The magnitude of the maximum eigenvalue is 1.0 for all values
of the angle ¢. Hence, the interpolation scheme is uncondi-

tionally stable for all Fourier components of initial data.

4, Stability of difference scheme with interpolation

The linear stability analysis of the overall solution
algorithm is made by combining the linearized difference
equations with the interpolation procedures for the dependent
variables at the base points on the initial data surface. The
characteristic point network is shown in Figure 13.1. In the

linear analysis,; the base points (1) through (4) are equally
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spaced around the circumference of a circle of radius aAt
cenﬁered at point (5). These points are located by specifica-
tion of the acoustic speed, a, velocity, ﬁi' time increment,
At, and angle ¢ in the choice of the reference vectors.

If the assumption is made that the mesh is square with
spacing A%, = Ax, = bx, then the Courant number in Eq. 13.1 can
be expressed as

(Ju, | + a)

C = * At (13.73)
Ax

where C > 1.0 indicates violation of the CFL stability
critericn.

The base point coordinates can be written in terms of the
Mach number, M (based on average conditions), flow angle, 6,

reference vector angle, ¥, Courant number, C, and the relative

. Ax
mesh spacing, = as

x, (1)

. .1 _ _ (M cosf + cosy) Ax
Point (1): T = TR (C L)
X, (1) _ _ (M sin® - siny) (c Ax
L M+ 1 L

X, (2) . ,
. . 1 . _ M cos® -~ siny) Ax
X, (2) _ _ (M sin® + cosy) Ax

T M T 1 (€ =%
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. . *1 _ _ (M cosf - cosy) Ax
Point (3): T = N T (¢ =)
%280 (sing - siny) . A%
L B M+ 1 9
x, (4) .
. . 1 _ _ (M cosbB + siny) Ax
Point (4): T = TR (C _f)
X2(4) _ _ (M sin® - cosy) (c ég)
L - M+ 1 L
X, (5)
. 1 9
Point (5): = - g_gg%_ (c é%)
%200 wsing o oax,
L ~ M+1 L

where the coordinates at the solution point (6) are xl(6) =

x.i6) = 0. The values of the dependent varianies At fthe bacge

(AN

points arc determined by evaluating the interpolating

polynomial, Eg. 13.65, i.e.,

U(I) = £(I) T(0) (1 =1,2,3,4,5) (13.74)
where
xl(I) . x2(I)
f(1) = aj + aj ( T ) + aj ( T )
x,(I) x,(I) x, (I) ¥, (T)
' 1 2 o 1 2 . 2 2
tay () () +ag ()T 4 ag ()
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The values of the dependent variables at the solution point (6)
are expressed in terms of the assumed exponential form of the

solution, Egq. 13.20, evaluated at xl(6) = x2(6) =0,
U(6) = T(At) | (13.76)

Substitution of U(I) (I = 1,2,...6) from Egs. 13.74 and 13.76
into the linearized difference equations, Egs. 13.17-13.19,

with &i = {cosy, siny}, éi = {~siny, cosy} yields

-

cosy U, (At) + sinl U, (At) + —=— [£(3) - £(1)] P(0)
2 pa
- 172 [£(1) + £(3)][cosy U, (0) + siny U,(0)] = 0 (13.77)
= sinb U (st} + cosy U, (At) + —=— [£(4) - £(2)] P(0)
2 pa
- 1/2 [£(2) + £(4)ji-sinp U (0) + cosy U,(0}] = 0 (13.78)
P(at) + {£(5) - 1/2 [£{1) + £(2) + £(3) + £{4)1} P{0)

€2 fcosy [£(3) - £(1)] - siny [£(4) - £(2)1} U, (0)

5 {siny [£f(3) - £(1)] + cosy [f(4) - £(2)1} U2(0) =0

(13.79)
This system of equations written in matrix form is

Lan

(ALY + 2 T(0) =0 (13.80)
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where A is the amplification matrix

Ayq Bi2 Ayy
A =1 Byy Ayg Bs3
l_A3l Aqg A3

with elements

11

12

13

21

22

23

31

32

33

- 172 {cos®y [£(1) + £(3)] + sin®y (£(2) + £(4)]}

~ 1/2 siny cosy {f(l) + £(3) - £(2) - £(4)}

—— {cosy [£(3) - £(1)] - siny [£(4) - £(2)1}
2 pa

- 1/2 siny cosy{£f(1) + £(3) - £(2) - f£(4)}

- 1/2 {sin®y [£(1) + £(3)] + cosy [£(2) + £(4)]}

— {siny [£(3) - £(1)] + cosy [£(4) - £(2)1}
a

3%
ol

O}
Pt

{cosy [£(3) - £(1)] - siny [£(4) - £(2)1}

2

;

{siny [£(3) - £(1)] + cosy [£(4) - £(2)1}

£(5) = 1/2 [£(1) + £(2) + £(3) + £(4)]

(13.

(13.

(13

(13.
(13.
(13.
(13.

(13.

81)

82)

.83)

.84)

85)

86)

87)

ge)

89)

\0
[¢»]
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The elements of A are functions of the angles ﬂl and ¢2
defined by Egs. 13.70 and 13.71, respectively.

The spectral radii of the amplification matrix were
calculated for all combinations of angle sets {¢l, ¢}, {4, ¢2}
where |¢l| < ¢, |¢2| < ¢. The results of the stability
analysis are presented in Figures 13.4-13.11 with thé spectral

radii plotted versus thc freguency index

where '

1= %‘;% (13.91)
The spectral radiué is an even periodic function of the
frequency index, and only the results for the rahge of I é%

from 0.0 to 1.0 are presented. The plots illustrate the effect

~ay ———— S 24\
Cﬁ Ve ocur free parameters: L)

Te]

Mach numher . M:

(2) flow angle, 6; (3) Courant number, C; and (4) reference
vector angle, ¥. For the case § = 0, shown in Figures 13.4-
13.7, the overall scheme is clearly stable (|k| < 1.0) for the
larger values of frequency index. However, for smaller values
of frequency index, eigenvalues greater than 1.0 were cal-
culated in all cases. For the case ¥ = 45°, shown in Figures
13.8 and 13.9, eigenvalues greater than 1.0 were encountered
for all values of frequency index for M = 1.0. Figures 13.10

and 13.11 illustrate the unstable character of the method when

]

the CFL stability criterion is violated (C = 1.2). 1In none
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of the cases presented could the scheme be judged uncondi-
tionally stable for all values of frequency index if we choose
for the criterion |A| < 1.0. However, in all cases where the
CFL criterion is satisfied (C < 1.0), reductions in Courant
aumber from 1.0 to 0.8 produced corresponding reductions in the
amount by which the curves exceed A\ = 1.0. Hence, when the CFL
criterion is satisfied, the scheme could be judged stable by
the von Neumann criterion which allows maximum eigenvalues
somewhat greater than 1.0 (|x| . < 1.0 + 0(At)).

To provide another check on the stability characteristics
of the overall scheme, an example problem was set up for solu-
tion of a square mesh of points with uniform initial data and
boundary conditions fixed at the initial conditions. The
number of points in each coordinate direction was varied over
the range from 5 to 9. Solutions were made for various values

Cf the four Ifree parameters willl enmpnasis placed on tne

critical cases like those shown in Figures 13.8 and 13.9 at

time steps (10-20) when the CFL criterion was violated (C =
1.5). However, when the CFL criterion was satisfied, no

instabilities occurred even after 1000 time steps.
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XIV. APPENDIX E:

EXACT COMPARISON SOLUTIONS

The exact comparison solutions used tc determine the
order of the truncation error of the numerical algorithm were
based on; (1) steady source flow, and (2) Prandtl-Meyer flow
over a cylinder. Specialized computer programs were developed
to compute these solutions at arbitrary points in the flow
field. The calculations were made with 16 significant digits
with toleranc2s on iterative portions maintained at 10-105

The four dependent variables u, v, p, and p were calculated
at the nine points of the field point initial data cell. Since
these flows were steady, the order of the truncation error was
determined by comparing the solution from the field point
calculation with the exact solution at the midpoint of the

initial data cell.
A. Source Flow

Steady source flow is a one-dimensional flow in which the
properties vafy only with radial distance from the point source.
ication of Mach number at any radial position and any two
stagnation state properties completely determines the solution
at any point in the flow field. 1In this analysis, total
pressure, p,, total density, o and the Mach number M1 at

radius r, as shown in Figure 14.1 were assumed known.
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Figure 14.1. Source flow field

Solution point (x,y) and reference radius ry

Figure 14.2. Prandtl-Meyer flow over a cylinder

Reference point (1), intermediate point (2),
and solution point (3)
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The continuity equation, written between the upstream

station (1) and any point in the field is

plrlvrl = DI‘V.r (14.1)

where the nonsubscripted variables refer to the solution point,

and V. is the velocity. Substitution of the isentropic flow

relations
1 .,2,y-1
p=p, 1+ 5= n9 (14.2)
-1 .2 "'Ll
p=p,(1+ li_ M) (14.3)

into Eq. 14.1 yields a relation between Mach number and radial

location, i.e.,

L1 !
\

! 1 R —
_ A.Ll S 2

= (14.4)
+1 M
1 2 (y-1)

1+ 552

Solution of Eg. 14.4 for Mach number at the solution point is

[ PP B o

necessarily iterative. Using Newton's method (ref. 71} we can
write
ooy
ry ry'i
M: =M. +_-‘—‘—"' i = LY .
it1 ~ M . (1 =0,1...) (14.5)
a(z-)
1



206

where the subscript i denotes the ith cycle of the iteration.

d ()

The dcrivative dMl appearing in Eq. 14.5 is found by differ-

entiating Eg. 14.4, the result being

3=
a (=) M -1,

= = L — 1+ ) E5H (14.6)
2{y-1) M
Yy-1 .2
(1 + —i—~Ml)

linear variation of Mach number wi*h radius was assumed to
obtain an initial estimate for M in Eq. 14.5.

Following the solution for Mach number, the dependent
variables p and p were found from Egs. 14.2 and 14.3. The
velocity V. was determined using the definitions of Mach

number and acoustic speed, i.e.,

v =M LYBJ (14.7)
r P

The velocity components u and v can be expre=ssed in terms of

the velocity, - and the flow angle 6 as

£
1]

v_ cosb (14.8)

-

v

]

v, sinb (14.9)

where the flow angle is equal to the polar angle given by

6 = tan'l(i) (14.10)
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B. Prandtl-Meyer Flow over a Cylinder

Prandtl-Meyer flow over a cylinder is a simple wave flow
in which the flow properties are constant aleng Mach lines
propagating from the cylinder. In this analysis, the air flow
over the cylinder was assumed in a clockwise direction so that
left-running Mach lines were simple waves as shown in Figure
14.2. Also, it was assumed that the Mach number M1 at a point
upstream on the cylinder (point (1) in Figure 14.2) was known
along with stagnation pressure, po,/and stagnation density, oy-
Point (3) in Figure 14.2 represents any solution point in the
flow field, and point (2) the intersection of the cylinder and
the left-running Mach line through peoint (3). Hence, the

properties at point (3) are the same as those at peint (2).

The coordinates of points (2) and (3) are related through

dy _ .
ix = tan(6 + u) (14.11)

where 9 is flow angle, and u Mach angle. Since the properties
are constant along left-running Mach lines, from Eq. 14.11 we

can write the exact relation

= tan(G2 + u2) (14.12)
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if trigonometric identities and the relation between the flow

angle and the polar angle ¢ for points on the cylinder,
8 =¢ - 7m/2 (14.13)
are introduced, Eq. 14.12 can be reexpressed as

Yy~ Y, tand)2 tanu2 -1
Xy = X, B tancb2 + tanu2

(14.14)

Next, suobstitution of the coordinate transformation reiation
tan¢ = y/x (14.15)

into Eq. 14.14 gives

Y3 7 ¥y ¥, tany, - X,
X3 ~ X, Yy + X, tanu2

(14.16)

Finally, elimination of X31 ¥4 and yzvbetween Eq. 14.16 and

the following geometric relations

2 2 2
X5 + Yy, = ry (14.17)
2 2 _ 2 . + 18
X3 +y3 =13 (14.18)
tang, = y3/x3 (14.19)

yields (after considerable rearrangement)
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r
= 1 - - e -
X, = rl{?; cosH, cos(¢3 uz) Sln(¢3 uz)

(1 - (;%J coszuzig} (14.20)

Equation 14.20 provided a basis for an iterative solution for
the coordinates of point (2). The value of s in Eg. 14.20
was initially estimated as Hy = Ugy and was corrected as out-
lined below. Once the solution for X, was obtained from Eq.
14,20, Yy, was determined from Eg. 14.17.

Using the estimate for the coordinates at point (2) from
the above analysis, the Mach numbers at points (1) and (2) were
related through the corresponding Prandtl-Meyer angles by the

simple wave relation

2 vy = el - 62 (14.21)

where the flow angles 91 and ©

The Mach number M, was determined iteratively from the defini-

2
Je

=

) were found from Eg. 14.

tion of the'Prandtl-Meyer angle, i.e.,

% %
v(M) = l‘:%gtan”l [% (M? - 1)]— tan L (M2 - 115 (14.22)
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Using Newton's method, we can write the recursive relation

V = V.,
Mi+l = Mi + ——‘-—"1; ’ (i = 0,1..-) (14-23)

i
aMm|.
L

where the subscript i denotes the ith cycle of the iteration,

and where the derivative %%-was found by differentiating

Eq. 14.22, i.e.,

=5 M™) (14.24)

&2
=

The given Mach number at point (1) was used as the initial
estimate for M in Eg. 14.23. To close the iteration for the
Mach number M2 and the coordinates Xor ¥Yor the Mach angle Moy

was determined from the relation

i
ﬁ) (14.25)

and substituted back into Eq. 14.20. This process was
continued until convergence on M, was achieved.

After the Mach number at point (3) was determined, the
pressure p, and density 0y were found from the isentropic
relations, Egs. 14.2 and 14.3, respectively. The velocity d3

was determined from the relation

k
-Yp3
q; = M3 —_— (14.26)
f3
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Finally, the velocity components U, and v, were determined

from the relations

c
w
]

q3cose3

<
w
il

q351n63

where the flow angle 93 was found from Eq. 14.13 with ¢ = ¢2.
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XV. APPENDIX F:

ONE-DIMENSIONAL UNSTEADY FLOW EXAMPLES

Three examples of one-dimensional unsteady flows were
solved using the field point and boundary point algorithms
developed in‘Chapters III and IV. The results of these solu-
tions are presented in this section. Where available, solu-
tions obtained by the method of characteristics for one-
dimensional unsteady flow were used for comparison. These
results indicate that the boundary point calculations yield
preperly posed boundary conditions, and that accurate solutions
of transient flows can be obtained using the present method.

In these solutions, a rectangular grid with mesh spacing
Ax was overlaic on a straight duct (see Figure 15.la). The
grid had three points along each constant-x panel, which is
the minimum number of points needed to incorporate the initial-
data interpolation scheme (sec Appendix H). Only those points
along the center panel on the duct centerline were calculated
in the solution. The dependent variables at points along the

bounding constant-y panels were set equal to the values of the

corresponding dependent variableg at each grid point along the

duct centerline.

A. Centered Expansion Wave, Semi-Infinite Duct

In this first example, a semi-infinite duct pressurized

with air at pressure Py 1s instantaneously opened to the
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atmosphere at pressure Py A centered expansion wave

propagates into the duct as shown in Figure 15.1. The wave
accelerates the air from the stagnation state to a uniform
state at the ambient pressure. For the unchoked condition
(pa/p0 > 0.278), the transient flow is determined by the stagna-
tion conditions in the duct and the ambient pressure.

In the numericzl solution, the semi-infinite duct was
approximated by a duct of length L = 1 ft., shown in Figure
15.1a, and the boundary conditions at the upstream end of the
duct were fixed at the stagnation state. Field point calcula-
tiors (Chapter III) were made at interior points, while at the
end of the duct the downstream boundary point calculation
(Section IV.D.) was employed. Only the transient flow priox
to the time the expansion wave reaches the upstream end of the

duct was investigated. The soclution results for p_/p, = 0.8
g P4/ Py

Are shown in Ficure 1
T qure L

L5

.22 whare pressure ratio is plotted

|

versus time at x = -0.2 ft. for different mesh spacings. Also
shown is the exact solution obtained from the method of
characteristics for one-dimensional unsteady flow (ref. 72).
The results of the present method agree well with the exact
solution and also demonstrate the degree of resolution which
can be achieved with a relatively fine mesh (Ax = 0.01 ft.).
As further comparison, results by Serra (39) for this

problem using the Lax-Wendroff finite-difference method are

presented in Figure 15.2b. The better agreement of the present
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method with the exact solution over Serra's method is evident.
B. Centered Expansion Wave, Finite Duct

In this case, a finite duct filled with air is
instantaneously opened to the atmospherz where the ratio of
ambient pressure to stagnation pressure in the duct, pa/po, was
0.387. A centered expansion wave propagates upstream and
reflects in like sense from the closed end of thé duct, as
shown in Figure 15.3. The region of interaction between the
incident and reflected waves is a nonsimple wave region
through which the gas overexpands to a uniform state with
p/pb = 0.129 at the closed end of the duct.

In this example, the body point calculation (Section IV.B)
was used to compute the solution at the upstream end of the
duct at % = -1.0. The pressure variation with time at this

igure 15.4. NO eXact sovlution exists for

(72) have been included in Figure 15.4 for comparison. The

agreement of results of the present method and the graphical

solution is extremely good.
C. Centered Expansion Wave, Subsonic Inflow

This problem is similar to the preceding example, with the

exception that a plenum (in which the stagnation state is fixed)
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is attached to the duct at the upstream boundary (% = -1.0).

In this case, the centered expansion wave propagating upstream
reflects at the upstream bourdary as a weaker compression wave,
as shown in Figure 15.4. The compression wave moves downstream
and reflects in opposite sense from the downstream boundary.
This process of expansion and compression is repeated until a
uniform steady flow corresponding to the constant inlet
stagnation state and downstream static pressure is reached
throughout the duct.

‘In this example, the upstream boundary point calculation
(Section IV.C) with the velocity component u, set to zero was
employed at the upstream end of the duct. Pressure variations
with time at two points along the duct (% = -1.0, % = -0.5} for

a sparse grid (é% = 0.1) are shown in Figure 15.6. It is

observed from Figure 15.6 that the steady state solution was

a. t
B
reached throughout tiie duct when 5 = 17. Also, separate
. . . X -
expansion anG compression waves are discernable at the = = -0.5%

ES]

ocation.

|
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XVI. APPENDIX G:

QUADRIC CONE GEOMETRY

Th2 numerical solution of two-dimensional unsteady flows
incorporating the method of characteristics involves solution
of cnmpatibility relations written on characteristic surfaces
in three space. The envelope of characteristic wave surfaces
at a poirt in the space is locally tangent to the character-
istic cone which is represented by a quadratic equation in the
space coordinates. A discussion of quadric cone geometry, as
needed in the mathematical formulation of the method of
characteristics and in the numerical solution of the character-
istic relations, 1is presented here; This material is based on

the work of McConnell (73).

A. Equation of a Plane

2

Let Pl, P2 and P3 be three points with coordinates x}, Xy

and xi, respectively, as shown in Figure 16.1. Here, the
notetion x. is used to denote the point coordinates or,

equivalently, a vector with components X, = {xl, Xo» x3}. If

the point X5 lies in the plane of points Pl’ P, and P3, then
the difference vectors x. - x;, X. - x? and x, - x? are
i i i i i i

linearly dependent, i.e.,

1 LA 31 _
a[xi - xi] + b[xi - X ¥ c{xi - xi} =0 (16.1)
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: ] 1.2 3 Lo
Figure 16.1. Vectors Xiv X0 ¥ with endpoints Pl’ Pz, P3

lying in a plane

Figure 16.2. Vector li lying along a generator of a cone

with vertex X;
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where a, b and c are scalars. Equation 16,1 can be written in

component form as

3\ 3 ’2 '4 3w _
a(xl - xl‘ + b(xl - hl] + ckxl - Xl =0

1) 2 ( 3} _
a(x2 - %, + b[x2 - xz] + ckx2 - XZJ =0

3\ ( 2 4 3\
a(x3 - x3d + blx3 - x3] + ch3 - X3 = 0

This system of equations provides three equations foir the

- numbers a, b, and ¢ and can be written in matrix form as

_; - xl X, - x2 X. = x§- —;
1 1 1 1 1 1
1 2 3 _ '
Xy = X5 Xy = X, X, = X, o} =0 (16.2)
3

1 . .2 - . ~
1537 "3 3 7 "3 37 %3] %]

If a unique colution for a, b, and c exists, then the deter-

minant of the coefficient matrix in Eg. 16.2 must vanish, i.e.,

1 2 3
X, = Xj X, = X, X, = X3
1 2 3| |
Xy = X, X, = X, Xy = X, =0 (16.3)
A o 2 .3
X3 7 X3 3~ %3 X3 T %3




225

Equation 16.3 can be expressed as the sum of four determinants
whose elements involve only one component of the elements of

“he determinant in Eq. 16.3, i.e.,

1 3 1 3

Xl Xl Xl Xl Xl Xl

2 3 1 3

) %) X5 * Xy X, Xy

2 3 1 N 3

X3 3 3 X3 3 3
(16.4)

1 i 1 2 3

X1 1 X X X X1

+ x1 x2 X = 1 x2 x3

2 2 2 = X 2 2

1 2 1 2 3

X3 X3 X3 X3 X3 X3

which is a linear equation in the X, . Therefore, any linear

combination in Xs4

n.x., = B, (16.5)

. . 2
is the equation of a plara. If any one of the vectors x%, X

or xi‘is a null vector, then the plane passes through the

origin and Eq. 16.4 can be written

A.x, =0 (16.6)
i
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B. Equation of a Quadric Cone

A quadric cone is the locus traced out by a family of
+.n2s which all pass through a point,xg and whose unit vectors,

Ri, shown in Figure 16.2, satisfy a relation of the form

Aijlizj =0 (16.7)

. . . 0 .
where A,. is a symmetric second crder tenscr. The point X; is
called the vertex of the cone and the lines are called the
generators of the cone.

If Xy is any point on the cone, then we can write
0
X, = X, + ch, (16.8)
i i i

where ¢ is an arbitrary scalar. Solution for s in Eg. 16.8

and substitution into Eg. 16.7 gives

A..lx. - x?J X, - x9J = 0 (16.9)
l]l l\j j

PR T

which is the equation of the cone. If the vertex of the cone

is at the origin, Eg. 16.9 reduces to

Aijxixj =0 (16.10)

C. Tangent Plane to a Cone

Consider a point P, with coordinates x} which lies on the
line joining the points Po(xg) and P(xi . If k is the ratio of

the distances a/b shown in Figure 16.3, then the coordinates of
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Figure 16.3. Vectors X, s xg, xi with endpoints P, P P

0" "1

lying on a straight line -

CONE

Figure 16.4. Line POP intersecting a cone at points Py
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Pl can be expressed in terms of the coordinates of Po and P as

1 xg + kxi
Xl = ——TT'E'- . (16.111

Let the point Py lie on a cone, as shown in Figure 16.4,

then the coordinates of Pl satisfy Eq. 16.10, i.e.,

A..x

X =0 (16.12)
13%i%5

b

substitution of xi from Eq. 16.11 into Eqg. 16.12 yields

A, . X X,

0.0
13717

0 2 _ '
+ 2kAinin + k Aijxixj =0 (16.13)

Equation 16.13 is a quadratic equation in k, the roots of
which are the ratios in which the two points of intersection of
POP with the cone divide the 1line POP‘

If the point Py also lies on the cone, then

= 0 (16.14)
and Eq. 16.13 reduces to the equation

K (22, x0x, - kA, .X.X.) = 0 (16.15)
-J

17
- J - - J

. The root k = 0 in this equation corresponds to the point xg.
If the other root is zero the line POP just touches the cone
at PO,‘as shown in Figure 16.5. According to Eg. 16.15, the

condition for the vanisning of the second root is
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CONE

TANGENT PLANE

Figure 16.5. Tangent plane to a cone

TANGENT PLANE

RECIPROCAL CONE

Figure 16.6. Cone and reciprocal cone
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ijxixj =0 (16.16)

which is the equation of a plane through the origin [Eq. 16.6].
Any vector which is a scalar multiple of xg satisfies Eg. 16.16;
therefore, xg lies in the plane and Eg. 16.16 is the equation
of a tangent plane to the cone along the generator through xg.

The vector Xy is any vector in the tangent plane.
D. Reciprocal Cone

The reciprocal cone is the locus of lines which are
perpendicular to the infinite family of Eangent planes to a
cone, as shown in Figure 16.6.

| Consider the equation of a cone whose vertex is at the
origin,

.X.x. =0 (16.17)
13 13

If xi is an arbitrary point on the cone, then

A, xix, = 0 (16.18)
i3%i%5

is the equation of the tangent plant to the cone along the

. . .Ul - .
generator tnrough x.. Let

C. = B, .xt (16.19)
J 1] 1
then Eq. 16.18 can be written as
C.x. =0 (16.20)
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It is apparent from the form of this equation that the vector

C. is orthogcnal to Xy which is any vector in the tangent

-

iane.
The equation of the reciprocal cone can be expressed, in

general, as

Bijxixj =0 | (16.21)

where the coefficients Bij are to be determined. Since the
vector Ci is along a generator of the reciprocal cone, it will

satisfy Eq. 16.21, i.e.,
Bijcicj =0 (16.22)

Substitution of C; from Eq. 16.19 into Eg. 16.22 yields

1

B,.A .X A .xX, =0 6.23
1381 %P 5% (16.23)

MAwAntrA vl e an avhidvarg maint An Fha AANnA Fharafava wra

LIVl Lo voed o - O Aiar (R A T MLI kJU-LLA\— \Jia —ii. MASLdN g il LI Ty W

B
can write Eg. 16.23, in general, as

B..A, A, .x. X, =0 16.24
1]Ak1 237k ( )

Comparison of Egs. 16.17 and 16.24 yields the equation

BijAkiARj = Akl (16.25)

for determining the elements Bij'

If A is the matrix of elements Aij’ then

AR T =1 4 (16.26)
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where I is the unit matrix. An equivalent expression of Eq.

16.26 in index nctation is

*
Aj Ay = 6i£|A| (16.27)

%*
where Ai.

i are the cofactors of Ai

3 and |A| is the determinant
of A.

x %
Multiplication of Eq. 16.25 by AkmAzn gives

® * ® *
Bij[AkiAkml[Aszln] = Akm(Aszzn] (16.28)
or, with substitution of Eq. 16.27

* .
By 48 imdsnlAl = By {16.29)

Hence, it follcws that

X
anlAI = A (16.30)

Since the elements Aij are symmetric, the cofactors are

symmetric and Eq. 16.30 can be written

*
A, .

B,, = = = AI} (16.31)
i) IAl J

where A;% are the elements of the inverse matrix A—l, Accord-

ing to Egs. 16.21 and 16.31, the equation of the reciprocal

Al

cone is

..]_ ,
3 = 3
Aijxixj 0 {15.32)
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E. Conjugate Points with Respect to a Cone

Let the line joining the points Po(xg) and P(xi) intersect

a cone as shown in Figure 16.4. The roots, k, of Eq. 16.13
are the ratios in which the two points of intersection of POP

with the cone divide the line P,P. Here the points xg and Xy

do not, in general, lie on the cone.

If the roots of Eg. 16.13 are equal in magnitude but
opposite in sign, then the points P0 and P are called harmonic
conjugates with respect to the cone. According to Eq. 16.13,

this condition is expressed as

x. =0 (16.33)

which, for point P0 fixed, is the equation of a plane through

the origin [Eq. 16.6]. This plane is called the polar plane

: 3 o~~~ ESPSRpEI. Jra I — ... -
ot Pow iénce, the point PO anda any

point in its polar plane are harmonic conjugates with respect

te the cone. The polar plane of the point Py lying outside

the cone, and the point Pl(xi), lying in the polar plane of P0

inside the cone, are shown in Figure 16.7. If the point PO
lies on the cone, its polar plane is the tangent to the cone
through Py [Eq. 16.16 and Figure 16.5] and the corresponding
roots, k, of Eg. 16.13 both vanish.

The equation of the polar plane of a point Pl(x%) is

1. ]
AjgXx5 = 0 (16.34)
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POLAR PLANE OFP,

v

v« POLARPLANE oOF P,

OLAR PLANE OF Po

Figure 16.7. bpolar planes of points PO' Pl' P2 and mutual

conjugate diameters 0P, 0P, , OP, of a cone
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If Pl lies in the polar plane of PO' then the coordinates xi
satisfy Eg. 16.33, i.e.,

A..xq

1371

X,

i =0 (16.35)

Upon examination of Egs. 16.34 and 16.35 we see that the polar
plane of P, passes through Py, as shown in Figure 16.7. There-
fore, a point aiways lies in the polar plane of its conjugate

point.

If 2? is a unit vector in the direction of x?, then
x) = ¢gf (16.36)
i i *

where ¢ 1s a scalar. Substitution for xg from Eq. 16.36 into

Eg. 16.33 we get
=0 (16.37)

Hence, the polar planes of all points along the line through

X; corresponding to different values of ¢ in Eq. 16.37 coincide

and this plane is called the conjugate plane of a given line.
If Pl and P0 are conjugate points with respect tc a cone

then all points along the line through OPl are conjugate to all

points along the line through OPO. Two such lines are called

conjugate diameters of the cone. Two lines with unit vectors
0

2, and Qi are conjugate diameters if

[

o

A, . 8%

ijvi

% =0 (16.38)
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There exist an infinite number of diameters which are conjugate
to a line through the origin, 0, and they are the infinite
namber of lines through 0 lyirg in the conjugate plane of the
given line,
. 0 (1 2
The polar planes of the points P0 X P Xy and P2 X

)

are given by the equations

0. ,
Aggxix, = 0 (16.39)
xix. = 0 (16.40)
135173
ijxlxj =0, (16.41)

respectively. The lines through OPO, OPl, OP2 are called

mutual conjugate diameters if

A .x9xt =0 (16.42)
l]l_‘}

A, .xix? = 0 (16.43)
i3%i%5

2. .x%x9 = o (16.44)
i3%1%5

It is apparent from these two sets of eguations that two of the
points lie in the polar plane of the remaining point, as shown
in Figure 16.7. For a given line there exist an infinite
number of conjugate diameters lying in its conjugate plane.
Hence,; there exist a doubly infinite set of mutual conjugate

diameters for a cone.
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F. Canonical Equation of a Cone

Let the lines along OPl' OP2 and OP3 be mutual conjugate
diameters of a cone, then, according to Egs. 16.42, 16.43 and

16.44, we have

=0 (16.45)

Let the vectors xi, xi, xi represent a new system of basis

vectors, then in the new basis

X; =8, {16.46)
-..2—

x] = 6i2 (16.47)

%3 = 8 (16.48)
i i3 *

whare the overbar indicates quantities mcasured in the new
basis. It should be noted that the new ccordinate system is
not necessarily a cartesian svstem {(uniform scalinyg along the
three axes). The equation of a cone is invariant with respect
to coordinate transformations, therefore, from Egs. 16.45-

16.48 we have

= =1=2 _ s =
inin = Aij6i16j2 = A12 = A2l =0 (16.49)
= =223 _ = = = .
Aijxixj = Aij6i26j3 = A23 = A32 =0 16.50)
A, .x: .= . . = = P = ’
13%5%y = By485484) = Byy = A3 =0 (16.51)
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Hence, the equation of the cone in the barred system is

- - .2 - - 2 = - .2
All(xl) + A22(x2) + A33(x3) =0 (16.52)

which is called the canonical form of the equation of the cone.
There are an infinite number of coordinate systems in which the
equation of the cone can be expreséed in canonical form and
they correspond to the infinite number of sets of mutual con-
jugate diameters of the cone. Moreover, we may take any points
along the mutual conjugate diameters‘as unit points and the
equation of the cone will still be in canonical form. In
particular we may choose the points such that the nonzero
coefficients in the cénonical form of the equation of the cone

may all be plus or minus unity.
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XVII. APPENDIX H:

LEAST SQUARES BIVARIATE INTERPOLATION SCHEME

In the numerical integiration procedures the values of the
four dependent variables and their spatial derivatives are
needed on the initial data surface at the intersections of the
bicharacteristics and the particlc path. Since only discrete
data at the grid points'are known, interpolation procedures are
required.

An interpolation scheme using locally fitted, second-crder
least squares bivariate polynomials was selected. In this
method the polynomials are fit to the given data at nine points
by the method of least squares. The points selected are the
point whose physical space coordinates are the same as those at
the solution point and its eight neighbors in the logical array

Rekha

™Ay - 4+ T ~a1 -~
pULiic O (W

= A A~ A bl
Dlivulu pCc LU o

1. I hat
these neighboring points do not necessarily coincide with the
eight nearest neighbors in the physical space. This scheme
results in a considerable simplification in accounting pro-
cedures over that using the eight nearest neighbors since no
metric information is needed in determining the cell points.
Numerical studies have shown that the accuracy of both methods

are comparable. The global interpolation process consists of

the use of overlapping two-dimensional fits.
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Figure 17.1. Logical array point stencil for bivariate
interpolation
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The interpolating polynomial has the form

2 2

u, = a5, ta,x tazytoa, xy+oag xt+ ag v (17.1)

where u, (v =1,2,3,4) represent the dependent variables u, v,
p and p, respectively, x and y are the rectangular cartesian
space coordinates and auv (w=1,2,...6: v=1,2,3,4) are the
polynomial coefficiente. The coefficients for each dependent
variable are obtained by fitting the known data at each point
of the nine point cell using the method of least squares.
Derivatives of the dependent variables are determined by dif-
ferentiating the interpclating pel, <mias.

Collocation at all cell points is achieved only if the
minimum number of points corresponding to the number of

coefficients in the interpolating polynomial, which is six, is

used. However, the loss of accuracy due to the redundancy

introdnced hyr 11r:-inr;r nine I‘\ﬁ'ihf‘c ig em=ii an
nrrocnced by usinc e noints 1g gmz=11 2an

[l

is offset by th

o
advantage of computing ease of both the dependent variables
and their derivatives.

The least squares interpolation procedure has an added
advantage over the methods in the solution of flows with
locally supersonic regions where weak shocks can be expected
to occur. Shocks introduce discontinuities in the solution
surfaces whiph caiinot be handled by the method of character-
istics itself and therefore require the addition of special

shcck tracing procedures. These procedures involve treating



o
1~
o

the shock wave as a boundary,’satisfying the Rankine-Hugoniot
conditions across the shock and the basic field equations on
2ach side. In addition, independent interpolations are
required on both sides of the shock. However, in the case of
weak shocks the least squares interpolation method can be
expected to smooth oﬁt the discontinuity such that special

treatment is not required.

Let the known values of the dependent variables at the

. . i i .
cell pcints whose coordinates are x ; v- (i = 1,2;...9) be

designated by ut (i =1,2,...9) where the subscript v has the

-~

rarge v = 1, 2, 3, 4 corresponding to the variables u, v, p
and p, respectively. The values of the dependent variables

calculated from the interpolating polynomial at the cell

points, denoted by ut are

N
N

(17.2)

where the repeated indices do not imply summation. The sum of
the squares of the differences between the known values and
the values obtained from the interpolating polynomial are:

given by the equation

9 . .
S = ¥ (ut - ut) (17.3)



or using Eq. 17.2

9 . \ . .. .2 . 2
: i _ i _ i Jii _
Sy = izl‘hv A1y T 8% azyy agyX Y AgyX agvY

(17.4)

S,, 1s a measure of the error in the interpolating polynomial

and is minimized by varying the coefficients a (0 = 1,2,...6)

uv

such that
BSV ) asv ) asv ) asv ) 3Sv ) 3S o
éalv BaZv 8a3v aa4v aaSv aan

(17.5)

Equation 17.5 provides six conditions for the coefficients
a (0 =1,2,...6). With the indicated differentiations in

Eg. 17.4 performed, these six conditions become

. . A . 2 .2 .
i i i i 1, 1 = Tut
9alv + Ix a,, *+ Ly ag, * Ix'yra, + Ix ag, *+ ly a,, = Zuv
(17.6)
i 12 ii i% 1 i3
X ay, * Ix a,, * Xy ag, + X"y ag, + X ag,,
;22 -
+ IxXTy" ag, = Lu X (17.7)
i ii i2 ii? i% i
Ly alv + XYy a2v-+ Iy a3v + IX'Y a4v + I¥x vy aSv
i’ ii
+ Iy ap, = fuy {17.8)
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o L2, .. 2 .2 .2 .3 .
i i it i i i i” i i~ i
Lx'y a;, * LXTy a,, t LXy ag, t Ix™ vy agy t X"y ag,,
.. 2 ..
i i i i i
+ IX'y ag, = Zuvx v (17.9)
i2 i3 i2 . i3 i i4
LX aj, + IX a, + Ix" y as, + IxT y Ay + Ix g,
12 12 i 12
+ Ix" y ag, = Lu x (17.10)
i2 ; l2 3 : 1.3 2 i2
Ly oag, +LXTY ag, *oLy as, + Xy a4y + IxT vy ag,,
i i i?
+ Ly ac, = Zuvy (17.11)

where I implies summation on i over the nine cell points.
Equations 17.6-17.11 are a system of six linear
algebraic equations for the unknowns ay (W =1,2,...6). This

system can be written ir matrix form to include all variables

u. (v =1,2,3,4) as

SA

1
(=

(17.12)

where



Ly

(17.13)

(17.14)
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ruy Zué Tuy Zuz
ru xl Luixl Zu,,xl Zule
ii i i
Zuly Zyzy Zu3y Zu4y
U = | (17.15)
i i i iii i id e i i i
Zulx y Zuzx \% Lu3x Yy tuy Xy
i 42 i 12 i 12 i g2
Zulx Zu2x Zu3x Zu4x
i i ii i 12 i i2
Zuly Zuzy Zu3y Zu4y
L. -

The coefficient matrix S in Eq. 17.12 is symmetric and depends
only upon the cell point coordinates used in the least squares
fit. It is the same for all four variables for all time. Only
the nonhomogceneous terms depend on the values of.the dependent
variables. Thus, it is only necessary to lnvert the
coefficient matrix once in order to detcrmine the polynomial

coetficients for all four variables.
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