
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1974

A second-order method of characteristics for two-
dimensional unsteady flow with application to
turbomachinery cascades
Robert Anthony Delaney
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Applied Mechanics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Delaney, Robert Anthony, "A second-order method of characteristics for two-dimensional unsteady flow with application to
turbomachinery cascades " (1974). Retrospective Theses and Dissertations. 6029.
https://lib.dr.iastate.edu/rtd/6029

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F6029&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F6029&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F6029&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F6029&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F6029&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F6029&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/295?utm_source=lib.dr.iastate.edu%2Frtd%2F6029&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/6029?utm_source=lib.dr.iastate.edu%2Frtd%2F6029&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

INFORMATION TO USERS 

This material was produced from a microfilm copy of the original document. While 
the most advanced technological means to photograph and reproduce this document 
have been used, the quality is heavily dependent upon the quality of the original 

submitted. 

The following explanation of techniques is provided to help you understand 
markings or patterns which may appear on this reproduction. 

1.The sign or "target" for pages apparently lacking from the document 
photographed is "Missing Page(s)". If it was possible to obtain the missing 
page(s) or section, they are spliced into the film along with adjacent pages. 
This may have necessitated cutting thru an image and duplicating adjacent 

pages to insure you complete continuity. 

2. When an image on the film is obliterated with a large round black mark. It 
is an indication that the photographer suspected that the copy may have 
moved during exposure and thus cause a blurred image. You will find a 
good image of the page in the adjacent frame. 

3. When a map, drawing or chart, etc., was part of the material being 
photographed the photographer followed a definite method in 

"sectioning" the material. It is customary to begin photoing at the upper 
left hdi'iu Cùtilâr ùf 8i idfûê Snêët afiu tO Continué ûnûtOinu fiOm left tO 
right in equal sections with a small overlap. If necessary, sectioning is 
continued again - beginning below the first row and continuing on until 

complete. 

4. The majofity of users indicate that the textual content is of greatest value, 
however, a somewhat higher quality reproduction could be made from 
"photographs" if essential to the understanding of the dissertation. Silver 

wi lO iiiuy v/tuwiwu UL uutji IUI w lu» yv, w y ««iiwtiiy 

the Order Department, giving the catalog number, title, author and 
specific pftges you wish reproduced. 

5. PLEASE NOTE: Some pages may have indistinct print. Filmed as 
received. 

Xerox University (Microfilms 
300 North Zeeb Road 
Ann Arbor, Michigan 48106 



www.manaraa.com

74-23,729 

DELANEY, Robert Anthony, 1943-
A SECOND-ORDER METHOD OF CHARACTERISTICS FOR 
Tiro-DIMENSIONAL UNSTEADY FLOW WITH APPLICATION 
TO TURBOMACHINERY CASCADES. 

Iowa State University, Ph.D., 1974 
Engineering Mechanics 

University Microfilms, A XEROX Company, Ann Arbor, Michigan 

THIS DISSERTATION HAS BEF.IM MICROFILMED EXACTLY AS RECEIVED 



www.manaraa.com

A second-order method of characteristics 

for two-dimensional unsteady flow with 

application to turbomachinery cascades 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of 

The Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Departments: Mechanical Engineering 
Engineering Science and Mechanics 

Co-majors: Mechanical Engineering 
Engineering Mechanics 

by 

Robert Anthony Delaney 

Approved: 

Work

Iowa State University 
Ames, Iowa 

1974 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

ii 

TABLE OF CONTENTS 

Page 

NOTATIONS xiii 

I.. INTRODUCTION 1 

A. Statement of the Problem 1 

B. Solution Methods for Flow Problems in Gas 
Dyncmiics 2 

C. Numerical Integration Networks for the 
Method of Characteristics 6 

1. General 6 

2. Characteristic surface networks 10 

3. Bicharacteristic line networks 17 

D. The Present Numerical Method for Solution 
of Cascade Flows 23 

II. CHARACTERISTIC RELATIONS 24 

A. Equations of Motion 24 

B. Characteristic Surfaces /n 

1. Characteristic flow surfaces 29 

2. Characteristic wave surfaces 32 

C. Compatibility Relations 35 

1. Flow surface compatibility relations 36 

2. Wave surface compatibility relations 38 

D. Interdependence of the Compatibility Relations 41 



www.manaraa.com

ill 

Page 

III. SECOND-ORDER NUMERICAL INTEGRATION SCHEME 44 

A. General 44 

B. Parameterization of Bicharacteristics 45 

C. Difference Network 50 

D. System of Difference Equations 55 

E. Iteration Scheme 61 

F. Accuracy Studies 63 

1, Source flow accuracy study 64 

2. Prandtl-Meyer flow accuracy study 67 

G. Numerical Stability Studies 67 

IV. CASCADE BOUNDARY POINT NUMERICAL PROCEDURES 69 

A. General 69 

B. Body Point Calculation 73 

C. Upstream Boundary Point Calculation 76 

D. Downstream Boundary Point Calculation 80 

E. Trailing Edge Boundary Point Calculation 84 

F. Closure 88 

V. OVEPALL NUMERICAL ALGORITHM FOR SOLUTION OF 
CASCADE FLOWS 90 

A. Normalized Variables 90 

B. Initial Conditions 91 

C. Initial Data Cells 92 

D. Time Step Regulation 95 

E. Convergence Criterion 96 



www.manaraa.com

iv 

Page 

VI. CASCADE FLOW EXAMPLES 98 

A. Cascade Geometry and Solution Grid 98 

B. Subsonic Flow Case 100 

C. Transonic Flow Case 107 

VII. CONCLUSIONS AND RECOMMENDATIONS 116 

VIII. BIBLIOGRAPHY 119 

IX. ACKNOWLEDGEMENTS 127 

X. APPENDIX A; GENERAL THEORY OF QUASI-LINEAR 
HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS 128 

A. Characteristic Surfaces 128 

B. Characteristic Surface Geometry in Gas 
Dynamics 131 

1. Characteristic flow surfaces 132 

2. Characteristic wave surfaces 132 

C. Compatibility Relations 135 

D. Interdependence of the Compatibility 
Relations 136 

XI. APPENDIX B: THE GENERAL NUMERICAL METHOD 138 

A. Parametric Representation of Bicharacteristics 138 

B. Bicharacteristic Tangency Condition 141 

C. General Form of the Wave Surface 
Compatibility Relation 144 

D. The General Form of the Noncharacteristic 
Relation 149 

E. The Second-Order Numerical Scheme 150 



www.manaraa.com

V 

Page 

XIT.. APPENDIX C; FINITE-DIFFERENCE FORM OF THE 
BICHARACTERISTIC TANGENCY CONDITION 156 

XIII. APPfT:DIX D; NUMERICAL STABILITY ANALYSIS 165 

A. Courant-Friedrichs-Lewy Stability Criterion 166 

B. von Neumann Stability Criterion 170 

1. Linear difference equations 170 

2. Stability of the basic difference scheme 173 

3. Stability of interpolation scheme 181 

4« Stability of difference scheme with 
interpolation 188 

XIV. APPENDIX E: EXACT COMPARISON SOLUTIONS 203 

A. Source Flow 203 

B. Prandtl-Meyer Flow over a Cylinder 207 

XV. APPENDIX F: ONE-DIMENSIONAL UNSTEADY FLOW 
EXAMPLES 212 

A. Centered Expansion Wave, Semi-Infinite 
uuci- 212 

B. Centered Expansion Wave, Finite Duct 216 

C. Centered Expansion Wave, Subsonic Inflow 216 

r/I. APPENDIX G: QUADRIC CONE GEOMETRY 222 

A. Equation of a Plane 222 

B. Equation of a Quadric Cone 226 

C. Tangent Plane to a Cone 226 

D. Reciprocal Cone 230 

E. Conjugate Points with Respect to a Cone 233 

F. Canonical Equation of a Cone 237 



www.manaraa.com

vi 

Page 

XVII. APPENDIX H: LEAST SQUARES BIVARIATE INTER­
POLATION SCHEME 239 



www.manaraa.com

vii 

LIST OF FIGURES 

Figure Page 

1.1 Network of intersections of reference planes 
with characteristic surfaces 11 

1.2 Prismatic characteristic surface network 11 

1.3 Near characteristics network 14 

1.4 Tetrahedral characteristic surface network 14 

1.5 Tetrahedral bicharacteristic line network 18 

1.6 Modified tetrahedral bicharacteristic line 
network 18 

1.7 Network of intersections of streamlines and 
reference planes 20 

1.8 Pentahedral bicharacteristic line network 20 

2.1 Characteristic flow surface normals in two-
dimensional unsteady flow 30 

2.2 Characteristic flow surface geometry in two-
dimensional unsteady flow 30 

2.3 Characteristic wave surface normals in tri­
dimensional unsteady flow 34 

2.4 Characteristic wave surface geometry in two-
dimensional unsteady flow 34 

3.1 Characteristic cone, bicharacteristic parameter 
0, reference vectors a^, and degree of 

freedom, ip, in orientation of the reference 
vectors in the plane 47 

3.2 Interior or field poinc nework 51 

3.3 Steady source flow accuracy study 
Different time increments showing grid point 
cell, differential domain of dependence, and 
upstream reference station, r^. = 1.2; 

solution point location, r/r^ =1.25 65 



www.manaraa.com

viii 

Figure Page 

3.4 Prandtl-Meyer flow accuracy study 
Different time increments showing grid point 
cell, differential domain of dependence, and 
cylinder surface. = 1.2, 4)^ = 3n/4f 

solution point location, r/r^ = 1.25,- (J) = Tr/2 66 

4.1 Cascade solution grid 70 

4.2 Body point network 74 

4.3 Upstream boundary point network 77 

4.4 Downstream boundary point network 81 

4.5 Blade trailing-edge point network showing 
differential domain of dependence, wake model, 
and periodic boundary 87 

5.1 Cascade solution grid showing typical grid point 
cells 93 

6.1 Cascade nomenclature 99 

6.2 Blade surface static pressure distribution, p' 
Subsonic flow case; p^ = 0.685 101 

6.3 Velocity vector field 
Subsonic flow case; oi = 0.685 102 

6.4 Contours of static pressure p' 
Subsonic flow case; p^ = 0.685 103 

6.5 Contours of Mach number 
Subsonic flow case; p^ = 0.685 104 

6.6 Schlieren photograph of cascade flow field 
Subsonic flow case; p^ = 0.685 105 

0.1 Blade surface static pressure distribution, p' 
Transonic flow case; p^ = 0.578 

6.8 Velocity vector field 
Transonic flow case; p^ = 0.578 

6.9 Contours of static pressure p' 
Transonic flow case; p^ = 0.578 111 

139 

110 



www.manaraa.com

10 

11 

1 

1 

1 

2 

3 

4 

,5 

, 6  

.7 

. 8  

.9 

ix 

Contours of Mach number 
Transonic flow case; = 0.578 

Schlieren photograph of cascade flow field 
Transonic flow case; p^ = 0.578 

Characteristic surface geometry for flow 
problems in gas dynamics 

Orientation of reference vectors y. and v. 
along a bicharacteristic of ^ ^ ^ 
characteristic conoid 

Pentahedral bicharacteristic line network for 
two-dimensional unsteady flow 

Basic difference scheme network in initial data 
surface. Differential domain of dependence and 
convex hull of difference scheme 

Spectral radius of amplification matrix versus 
frequency index for basic difference scheme 

Spectral radius of amplification matrix versus 
frequency index for difference scheme with 
interpolation; C = 1.0, 0 = 0°, i|j = 0° 

Spect;:al radius of amplification matrix versus 
frequency index for oi-rference scheme with 
interpolation; C = 1.0, 0 = 45°, ^ = 0° 

Spectral radius of amplification matrix versus 
frequency index for difference scheme with 
interpolation; C = 0.8, 6 = 0°, 41 = 0° 

Spectral radius of amplification matrix versus 
frequency index for difference scheme with 
interpolation; C = 0.8, 0 - 45°, = 0° 

Spectral radius of amplification matrix versus 
frequency index for difference scheme with 
interpolation; C = 1.0, 6 = 0°, ijj = 45° 

Spectral radius of amplification matrix versus 
frequency index for difference scheme with 
interpolation; C = 0.8, 0 = 0°, = 45° 



www.manaraa.com

201 

204 

204 

214 

215 

217 

218 

220  

221 

223 

223 

X 

Spectral radius of amplification matrix versus 
frequency index for difference scheme with 
i n t e r p o l a t i o n ;  C  =  1 . 2 ,  0 = 0 ® ,  ̂  =  0 °  

Spectral radius of amplification matrix versus 
frequency index for difference scheme with 
interpolation; C = 1.2, 6 = 45®, ^ = 0® 

Source flow field 
Solution point (x,y) and reference radius r^ 

Prandtl-Meyer flow over a cylinder 
Reference point (1), intermediate point (2), 
and solution point (3) 

Duct geometry and wave diagram for the centered 
expansion wave, semi-infinite duct problem 

Centered expansion wave, semi-infinite duct 
problem 
Pressure variation with time at position 
X = -0.2 ft. 

Duct geometry and wave diagram for the centered 
expansion wave, finite duct problem 

Centered expansion wave, finite duct problem 
Pressure variation with time at closed end 

Duct geometry and wave diagram representation 
for the centered expansion wave, subsonic 
inflow, finite duct problem 

Centered expansion wave, subsonic inflow.-
finite duct problem 
Pressure variation with time at locations 
x/L = -1.0 and x/L = -0.5 

12 3 
Vectors x^, x^, x^ with endpoints P^, Pg, Pg 

lying in a plane 

Vector lying along a generator of a cone 

with vertex x? 



www.manaraa.com

xi 

Figure Page 

16.3 Vectors x?, x^ with endpoints P, Pq, P^ 

lying on a straight line 227 

16.4 Line P^P intersecting a cone at points 227 

16.5 Tangent plane to a cone 229 

16.6 Cone and reciprocal cone 229 

16.7 Polar planes of points Pq, P^, P^ and mutual 

conjugate diameters OPq, OP^, OP^ of a cone 234 

17.1 Logical array point stencil for bivariate 
interpolation 240 



www.manaraa.com

xii 

LIST OF TABLES 

Tabic Page 

3.1 Results of steady source flow accuracy study 65 

3.2 Results of Prandtl-Meyer flow accuracy study 66 

6.1 Cascade geometry data 99 



www.manaraa.com

xiii 

NOTATIONS 

amplification matrix; matrix of polynomial 
coefficients in system of aquations for least 
squares polynomial coefficients 

elements of amplification matrix A; coefficients of 
quadratic terms in equation of a cone 

cofactors of A^^ 

coefficients of quadratic terms in equation of a 
reciprocal cone 

coefficients o£ derivatives in direction in 

general form of wave surface compatibility relation 
(v = 1,2,...,n) (see Eq. 11.19) 

acoustic speed 

k 
normalized acoustic speed, (yp'/p') 

least squares polynomial coefficients (y = 1, 2 , . . . ,  
S f V — l,2,.>o,4) 

derivative coefficients in a general system of 
first-order partial differential equations 
(y,v = l,2,..a,n; i ~ 1,2,3) 

term in general form of wave surface compatibility 
relation (see Eq. 11,19) 

coefficients in system of difference equations for 
pressure and velocity components at solution point 
(see Eq. 3.29) 

nonhomogeneous terms in a general system of first-
order partial difjTerentitil equations 

Courant number; blade chord 

axial chord 

coefficients of derivatives in direction in 

general form of wave surface compatibility relation 
(v = 1,2,...,n) (see Eq. 11.19) 



www.manaraa.com

xiv 

coefficients in system of difference equations for 
pressure and velocity components at solution point 
(see Eq. 3.29) 

nonhoniogeneous terms in system of difference 
equations for pressure and velocity components at 
solution point (see Eq. 3.29) 

identity matrix; frequency index (defined in Eqs. 
13.45 and 13.91) 

characteristic length; duct length 

tangent vector to a bicharacteristic 

Mach number 

vector in a characteristic wave surface transverse 
to bicharacteristic direction 

unit vector tangent to the intersection of a 
characteristic wave surface and the physical plane 

frequency index (see Eq. 13.20) 

magnitude of Nj^ 

characteristic surface normal vector 

unit normal vector 

order of system of partial differential equations; 
frequency index (see Eq. 13.20) 

function of t in Fourier series solution for p 
(see Eq, 13.20) 

static pressure 

normalized static pressure, p/Pq^ 

stagnation pressure 

magnitude of velocity vector 

radius 

minimum distance to convex hull of difference scheme 

coefficient matrix in system of equations for least 
squares polynomial coefficients; blade spacing 



www.manaraa.com

XV 

vector tangent to particle path 

i i ' 
S,, sum of squares of differences between u and u 
V V V 

(V =  1 , 2 , 3 , 4 ;  i = 1,2,...,9) 

s specific entropy 

vector tangent to intersection of the physical 
plane and a characteristic flow surface 

T static temperature 

T' normalized static temperature, T/T^^ 

T vector with components U^, P 

Tq stagnation temperature 

components of T (v = 1,2,3) 

t time 

U matrix in system of equations for least squares 
polynomial coefficients 

U, function of t in Fourier series solution for u, 
(see Eq. 13.20) 

U„ function of t in Fourier series solution for u. 
(see Eq. 13.20) 

vector with physical component u. and tangent to 
particle path ^ 

Û vector with comoonents u,. u-. 5 
1 ' / 

u X coordinate velocity component 
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I. INTRODUCTION 

A. Statement of the Problem 

In recent years aircraft gas turbine engines have been 

reduced in size and weight by incorporating fewer, but more 

highly loaded compressor and turbine stages. Relative flow 

velocities near the tip sections of these blade rows have been 

pushed well into the transonic regime. In this case, blade 

profile design or selection becomes more critical than in 

conventional subsonic machines; slight variations in blade 

profiles can induce strong shock waves. Also, the use of 

highly cambered blades for increased blade loading may lead to 

boundary layer separation on the blade suction surface. In 

contrast to subsonic experience, a smooth blade profile in 

transonic or supersonic flow does not guarantee smooth blade-

surface pressure distributions. Thus, the designer is faced 

with the problem of solving for the blade-to-blade flow in 

determining aerodynamically efficient blade designs. 

The purpose of this study was to develop an accurate 

numerical method for solution of steady, inviscid transonic 

blade-to-biade flow in turbine cascades. In the particular 

turbine cascade eases of interest, shock losses are generally 

small; thus capability of the analysis method to predict strong 

shocks was not considered important. Also, it is generally 

true in transonic cascade flows that the Reynolds number is 
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sufficiently large so that viscous effects may be neglected, 

and that inviscid flow solutions will yield acceptable results. 

B. Solution Methods for Flow Problems 
in Gas Dynamics 

The equations of motion for two-dimensional steady 

inviscid flow are not easily solved in the transonic regime. 

In steady subsonic flow, the system of equations is elliptic? 

and the solution at a point in the flow field depends on all 

boundary data (jury problem). In steady supersonic flow, 

however, the system of equations is hyperbolic, and the flow 

solution depends only on upstream data (initial-value problem). 

Hence> a single numerical method does not exist for the solution 

of the flow in both the subsonic and supersonic regimes. A 

number of solution methods based on approximations to the 

physical flow model have been used for mixed-flow analysis 

(e.g. method of integral relations (ref. 1) and streamline 

curvature methods (ref. 2, 3); however, the accuracy of these 

methods may be questioned on the basis of the mathematical 

model used. 

An alternate approach for solution of steady transonic 

flows is available if one considers the steady flow as the 

asymptotic limit in time of a transient flow. With the addi­

tion of time as a third independent variable in two-

dimensional flow, the equations of motion become hyperbolic 

regardless of flow regime. The analysis problem is then an 
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initial-value or Cauchy problem. Due to the advent of high­

speed digital computers, time-dependent techniques have 

received much attention in computational fluid dynamics in 

recent years and hold considerable promise for cascade flow 

analysis. 

The numerical solution methods for hyperbolic systems of 

partial differential equations in three independent variables 

can be classified as; (1) finite-difference methods, and 

(2) characteristic methods. Finite-difference methods involve 

replacement of the derivatives in the system of equations by 

finite-differences, followed by solution of the difference 

equations. In characteristic methods, the original system of 

equations is first replaced by an equivalent system of compati­

bility relations written on characteristic surfaces. The 

system of compatibility relations is then written in finite-

difference form for numerical solution. 

Variations on the finite-difference methods include 

methods utilizing artificial viscosity (ref. 4, 5). In these 

methods, extra terms are added to the difference equations to 

simulate viscous terms in the Navier-Stokes equations. These 

added terms stabilize the numerical solution in regions of 

large property gradients and allow a direct accounting of 

embedded shock waves in transonic flows. A major problem 

encountered with finite-difference methods is incurred in 

devising accurate boundary point calculations at surfaces which 
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are not coordinate planes. At these points, extrapolations or 

interpolations must be used. Even if the boundaries are 

coordinate planes, loss of accuracy results because derivatives 

normal to the boundaries can only be replaced by one-sided 

differences. 

A number of investigators have developed cascade analyses 

based on finite-difference meUiods. Gopalakrishnan and Bozzola 

(6, 7) have used MacCormack's scheme (8) for solution of 

transonic flows in turbine and compressor cascades. Un­

fortunately, they presented no experimental data to verify the 

computed results. McDonald (9) has also developed a finite-

difference scheme in which numerical representations of the 

equations of motion in integral form are employed. This 

scheme, called the "finite area" method, was applied by 

McDonald to transonic flows in turbine cascades; good compari­

sons of his computed results with experimental da La weie 

obtained. 

Characteristic methods are. in general, more accurate 

than finite-difference methods because they adhere closely to 

the physical flow model. In particular, the differential 

domain of dependence of the solution point is considered. 

Another advantage of characteristic methods is that accurate 

numerical solution procedures can be devised at flow field 

boundaries, A disadvantage is the complexity of the formula­

tion and programming tasks. It is for this reason, perhaps, 
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that characteristic methods have not been applied to the 

cascade problem. 

Since the objective of this study was to develop an 

accurate numerical method for solution of steady transonic 

flows in cascades, the method of characteristics was employed. 

Rigorous treatment of the differential domain of dependence 

which lies upstream of solution points in transonic flows is 

necessary to obtain accurate solutions. Also, the advantage 

in accuracy afforded by characteristic methods at boundary 

points is extremely important in the cascade application where 

a large number of complex boundary conditions exist. 

Many numerical integration schemes for the method of 

characteristics have been proposed and used for solution of 

flow problems in gas dynamics involving three independent 

variables. These various schemes are based on different 

nuraerical iiiLeyrdtion networks formed from combinations of 

characteristic surfaces. Although most of these schemes have 

been specifically developed for two-dimensional unsteady flow 

or three dimensional steady supersonic flow, they apply equally 

well to either of these flow problems. Two infinite families 

of characteristic surfaces exist in either of these flow 

problems. One family of surfaces (flow surfaces) is tangent 

to the particle path or streamline and the other family of 

surfaces (wave surfaces) is locally tangent to the character­

istic cone, which in two-dimensional unsteady flow is the 
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sonic cone and in three-dimensional steady supersonic flow is 

the Mach cone. An infinite number of combinations of character­

istic surfaces may be used for numerical solution, thus 

explaining why the many different numerical integration net­

works have been proposed in various characteristic solution 

methods. 

C. Numerical Integration Networks for the 
Method of Characteristics 

1. General 

A survey of the literature on numerical integration net­

works for the method of characteristics is presented in the 

following sections. Similar surveys have been given by Powell 

(10), Chushkin (11) , Sauerwein (12), Strom (13), and Ransom 

(14). Prior to the discussions of the various schemes, how-

S • 
ever, a few remarks regarding construction, accuracy, stability 

and computation time required in the different types of 

characteristic networks are appropriate. 

The characteristic networks, as presented here, are 

divided into characteristic surface networks and bicharacter-

istic line networks. Characteristic surface networks utilize 

the mutual intersections of characteristic surfaces, or the 

intersections of characteristic surfaces with noncharacter-

istic reference planes. In bicharacteristic line networks, 

the generators of the characteristic cone are employed. In 

general, characteristic surface schemes are more efficient 
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because of the simplicity of the network. On the other hand, 

schemes based on bicharacteristic line networks are usually 

more accurate due to the more rigorous treatment of the dif­

ferential domain of dependence. 

Characteristic networks can be further subdivided on the 

basis of direct or inverse schemes. In direct schemes, the 

network lines are projected forward from known base points in 

the initial data surface to locate the solution point. In 

inverse schemes, the base pblnts are located by projecting the 

network lines back from a predetermined solution point, and 

base point flow properties are then determined by interpolation. 

Inverse schemes allow the solution to advance in parallel 

planes, thus simplifying the global solution algorithm. How­

ever, direct schemes require fewer interpolations, thus 

increasing accuracy and decreasing computation time. 

All numerical solution schemes for hyperbolic systems of 

partial differential equations must be examined for stability 

before implementation. Many criteria exist for testing stabil­

ity, and an extensive discussion of these criteria is given 

by Richtmyer and Morton (15). All the stability criteria are 

based on linear difference equations. For the case of nonlinear 

difference equations, the approach taken is to linearize the 

difference equations and to apply these same criteria locally. 

Courant, Friedrichs, and Lewy (16) have shovm that a necessary 

condition for stability is that the domain of dependence of the 
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system of differential equations must be contained within the 

convex hull of the differencing scheme defined as the polygon 

formed by connecting the outermost points used in the differ­

encing scheme on the initial data surface. For two-dimensional 

unsteady flow, the differential domain of dependence is the 

region enclosed by the intersection of the sonic cone, whose 

vertex lies at the solution point,with the initial data surface. 

This geometric stability test, called the Courant-Friedrichs-

Lewy (CFL) stability criterion, is particularly useful for 

preliminary evaluation of proposed networks. 

In the numerical solution incorporating these schemes, 

finite-difference approximations of the compatibility relations 

are written along the network lines between base points on the 

initial data surface and the solution point. The minimum 

number of compatibility relations employed is equal to the 

nurfiber or dépendent variables appearing in the cystcm of equa­

tions. In first-order accuracy schemes, the coefficients in 

the difference equations are evaluated on the initial data 

su: face, and the solution is determined using a single pre­

dictor step. More accurate schemes are obtained by supple­

menting this procedure with a corrector step wherein the 

coefficients in the difference equations are updated with 

average values between the base point and solution point. 

Many schemes use multiple corrector steps. 
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In order to develop second-order accuracy schemes, cross 

derivatives appearing in the wave surface compatibility rela­

tions (i.e. derivatives along a direction transverse to the 

network lines) must be either evaluated or eliminated at the 

solution point. In some characteristic surface networks, the 

solution point is coupled to a previously determined neighbor­

ing point in the solution plane, and the cross derivatives at 

the solution point are approximated by simple differences 

between the points. However, it does not appear that second-

order accuracy is achieved with these schemes because the dif­

ferential domain of dependence is not rigorously considered. 

In bicharacteristic line networks, the cross derivatives can 

only be calculated if the entire solution plane is solved and 

the solution repeated using derivatives calculated from the 

first solution. Butler (17), in his integration scheme utiliz-

4 y» /-f ^ V" 1 /^Vn —» ^ 1 r* ^ ̂ 1 - «—» J ^ J— ^ J 
^ A te ^ WA A W ^ WA * * W Vt «V «L. ^ ^ 1 iC L»W w -1- JV f C _L Vt 

cross derivative terms at the solution point in the system of 

difference equations by introducing one additional wave surface 

compatibility relation and a noncharacteristic relation. 

There is an infinite number of bicharacteristics passing 

through the solution point from which to choose for construc­

tion of inverse bicharacteristic line networks. Butler (17) 

and Chu (18) have devised schemes which incorporate any number 

of the infinite family of bicharacteristics. In these schemes, 

the finite-difference form of the bicharacteristic compatibility 
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relations are integrated around the circumference of the dif­

ferential domain of dependence. While the accuracy of these 

methods increases with the number of bicharacteristics, the 

computational time also increases due to extensive interpola­

tions required at the base points to evaluate the integrals. 

Practical schemes have been developed using more than the 

minimum number of finite-difference relations required for a 

determined system. This redundant solution approach has been 

used by Pridmore Brown and Franks (19), Powers, Niemann and Der 

(20), and Chu (21) where an overdetermined system of four wave 

surface compatibility relations was solved for three dependent 

variables in a least squares sense. Sauerwein (22) and Strom 

(13) determined multiple solutions using the minimum number of 

relations required for a determinant system and subsequently 

averaged the results. 

2. Characteristic surface networks 

a. Network of intersections of reference planes with 

characteristic surfaces The network of intersections of 

reference planes with characteristic surfaces, as discussed by 

Ferrari (23), Moeckel (24), and Sauer (25) for solution of 

three-dimensional supersonic flow, is a direct scheme utilizing 

intersections of characteristic surfaces with orthogonal 

coordinate planes. As shown in Figure 1.1, the solution is 

advanced on constant-x^ planes. The solution point (8) lies at 

the intersection of two characteristic wave surfaces and the 
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WAVE SURFACES 
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Figure 1.1. Network of intersections of reference planes 
with characteristic surfaces 
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( 5 )  

( 7 )  
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(6) 

BICHARACTERISTICS 

STREAMLINE 

Figure 1.2. Prismatic characteristic surface network 
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reference plane, = constant. Initial data points (1), (2), 

(5), and (6) lie along the lines of intersection of the initial 

data plane and the planes, = constant. Point (4) is a 

previous solution point. The wave surface compatibility rela­

tions are written along line (5) - (8) and (6) - (8) with cross 

derivative terms evaluated along the wave surface intersection 

(4) - (8). A compatibility relation written along the stream­

line projection (7) - (8) is used as an additional equation for 

solution of nonhomentropic flows. Following the solution at 

point (8), the solution at point (9), lying in the plane x^ = 

constant, is predicted using interpolation or extrapolation 

along one of the characteristic surfaces. 

The major disadvantage of this network is that the CFL 

stability criterion is violated whenever the initial data 

points do not include the differential domain of dependence of 

the solution point. Also, the accuracy of the scheme is 

reduced due to interpolations required to maintain the solution 

on parallel planes (x^ = constant). A further difficulty in 

applying this scheme is that additional end conditions on the 

const&nt-Xg planes are required to initiate calculations on 

the solution plane. If planes of symmetry do not exist, an 

iterative procedure is required to obtain closure of the solu­

tion between end planes. 



www.manaraa.com

b. Prismatic characteristic surface network Holt (26) 

developed a network based upon the works of Coburn and Dolph 

(27) and Titt (28). This network was later named the prismatic 

characteristic surface network by Powell (10). The network, 

shown in Figure 1.2, is similar to the network of intersections 

of reference planes with characteristic surfaces, except that 

the end planes are meridional planes through the character­

istic cone defined by two bicharacteristics and the streamline. 

As pointed out by Heie and Leigh (29), this scheme violates the 

CFL stability criterion. This method shares the same dis­

advantages a;: the network of intersections of reference planes 

and characteristic surfaces regarding interpolation to main­

tain the solution on parallel planes, and regarding initiation 

and closure of the solution on end planes. Apparently, no 

attempts have been made to use this scheme. 

c, Near characterisLies necwork The near character­

istics network, shown in Figure 1.3, is formed by the inter­

sections of two characteristic wave surfaces and one character­

istic flow surface with a single reference plane. An inverse 

approach is used in which the near characteristics are pro­

jected back into the initial data surface from the fixed solu­

tion point (4). Flow properties at base points (1), (2), and 

(3) are determined by simple univariate interpolations along 

the intersection of the initial data surface and the reference 

plane. Cross derivatives in the wave surface compatibility 

relations are evaluated only on the initial data surface. 
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Figure 1.3. Near characteristics network 
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Figure 1.4. Tetrahedral characteristic surface network 
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Originally, the method was developed by Sauer (30) and Holt 

(31) for two-dimensional unsteady flows; however, it has been 

applied to three-dimensional supersonic flow field calculations 

by Moretti (32, 33), Rakich (34, 35), and Katskova and Chushkin 

(36). Recently, the method has been proposed and/or used at 

boundaries in hybrid time-dependent calculations incorporating 

finite-difference procedures at interior points, by Moretti and 

Abbett (37), D'Souza, Holder and Moretti (38), Serra (39, 40), 

Kentzer (41), Porter and Coakley (42), and Gopalakrishnan (43). 

The main advantage of the near characteristics scheme is 

its simplicity. Only three near characteristics are used, and 

base point flow properties are determined by simple univariate 

interpolations. The scheme has been shown to be particularly 

well suited to three-dimensional steady supersonic flows about 

axisymmetric bodies where the reference planes are meridional 

planes through the body axis. Hcv;ever, it iz net apparent that 

the method can be applied with equal success to the general 

two-dimensional unsteady flow problem where cross flow normal 

to reference planes can result in the base points, as shown 

in Figure 1.3, lying completely outside the differential domain 

of dependence. 

d. Tetrahedral characteristic surface network The 

tetrahedral characteristic surface network is a direct scheme 

originally proposed by Thornhill (44). In this network, shown 

in Figure 1.4, the solution point C5) is located at the mutual 
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intersection of three characteristic wave surfaces through 

lines (1) - (2; (1) - (3), and (2) - (3), where points (1), 

(2) , and (3) known initial data points. Bicharacteristics 

(1,2) - (5), (1,3) - (5), and (2,3) - (5) are located as lines 

of tangency between the characteristic cone and the three 

characteristic planes. The particle path or streamline (4) -

(5), projected from the solution point back to the initial data 

surface, provides a fourth characteristic line. Flow 

properties at base points (1,2), (1,3), and (2,3) are deter­

mined by linear interpolation along lines (1) - (2), (1) - (3), 

and (2) - (3), respectively. As shown in Figure 1.4, the CFL 

stability criterion is satisfied; hence a stable scheme is 

expected. Tsung (45) used this method to solve the three-

dimensional steady flow past a conical boattail and a delta 

wing at an angle of attack. Reed (46, 47, 48) also used this 

method for solving three-dimensional supersonic rotational flow 

in nozzles. 

The main disadvantage of this scheme is the large number 

of different interpolations required for base point data; i.e., 

three linear interpolations at points (1,2), (1,3), and (2,3) 

and bivariate interpolation at point 4. Interpolation or 

extrapolation is also required in the direction of integration 

if the solution is to be advanced on parallel planes. 
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3. Bicharacteristic line networks 

a. Tetrahedral bicharacteristic line network Another 

direct scheme proposed by Thornhill (44) is the tetrahedral 

bicharacteristic line network shown in Figure 1.5. In this 

network, the solution point (5) is located at the mutual inter­

section of characteristic cones with vertices at the known 

initial data points (1), (2), and (3). Lines (1) - (5), (2) -

(5), and (3) - (5) are straight line approximations of bi-

characteristics through point (5). The particle path (4) - (5) 

is projected from the solution point back to the initial data 

surface. 

The main advantage of this scheme is that base points (1), 

(2), and (3) remain fixed during the solution; thus no inter­

polation is required for the flow properties at these points. 

However, interpolation is required at point (4). An apparent 

disadvantage with this scheme, as with all direct schemes, ib 

that there is no direct control over the location of the solu­

tion point. The major disadvantage of the scheme, however, is 

that it is unstable due to violation of the CFL stability 

criterion seen in Figure 1.5 where the differential domain of 

dependence lies partially outside the convex hull of the dif­

ference scheme. This fact was discovered by Sauerwein (12) in 

attempting to apply the technique to unsteady flow problems» 

Fowell (10) developed numerical procedures based on this net­

work for analysis of supersonic flow over wing-body 
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Figure 1.5. Tetrahedral bicharacteristic line network 
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configurations. However, he made only a few hand calculations 

with the method, and apparently did not discover the instabil­

ity of the method. 

b. Modified tetrahedral bicharacteristic line network 

Sauerwein (12) proposed a modified version of the tetrahedral 

bicharacteristic line network in order to satisfy the CFL 

stability criterion. In this network, shown in Figure 1,6, a 

triangle is drawn connecting initial data points (1), (2), and 

(3). Points of tangency of the triangle and an inscribed 

circle [points (1,2), (1,3), and (2,3)] are used as base points 

for the tetrahedral bicharacteristic line network. Linear 

interpolations along the sides of the triangle are used to 

determine the flow properties at the base points. This scheme 

satisfies the CFL criterion and was found to be stable by 

Sauerwein. This network closely resembles the tetrahedral 

charàcLerisLio- surface network and also shares the same 

advantages and disadvantages. 

c. Network of intersections of streamlines and reference 

planes Strom (J3) developed an indirect scheme, shown in 

Figure 1.7, which he Cc.j led the network of intersections of 

streamlines and reference planes. In the network construction, 

the solution point (6) is located first by projecting the 

streamline forward Irora the initial data point (5). Four 

equally spaced bicharacteristics are then projected from the 

solution point back to the initial data surface. Bivariate 
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Figure 1.8. Pentahedral bicharacteristic line network 
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interpolating polynomials fitted to point (5) and eight 

neighboring points are used to determine the flow properties 

at base points (1) - (4). The cross derivative terms in the 

wave surface compatibility relations are ignored at the solu­

tion point. Multiple solutions are determined using sets of 

three bicharacteristics with the results subsequently averaged. 

One advantage of this network, over previous inverse 

schemes, is that streamlines are followed in the solution. 

Streamline tracing is especially desirable in chemically 

reacting flows. Also, according to Strom, the use of a single 

bivariate interpolating polynomial for calculating each 

dependent variable at all base points is desirable from the 

standpoint of computational time required. 

Strom (13) used this scheme to predict the three-

dimensional supersonic flow field over blunt conical bodies. 

Chu eL dl. (49,- tG; used a version of this scneme to solve a 

number of three-dimensional supersonic flow problems. 

d. Pentahedral bicharacteristic line network Butler 

(17) developed the pentahedral bicharacteristic line network 

shown in Figure 1.8. In this scheme, second order accuracy is 

clearly maintained. As originally proposed, the scheme 

involves integration of the wave surface difference equations 

over the infinite family of bicharacteristics passing through 

a point. In practice, however, the integrals are replaced by 

summations over four equally spaced bicharacteristics around 
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the characteristic cone. The scheme is unique in that cross 

derivatives are eliminated at the solution point. Butler 

proposed an inverse scheme in which the solution point (6) is 

fixed, and the bicharacteristics and particle path are pro­

jected back into the initial data surface. Base point flow 

properties are determined using bivariate polynomials fitted 

to known initial data points. Talbot (51) has applied this 

method to unsteady shock-thermal layer interaction problems. 

Also, Elliott (52) and Richardson (53) used this scheme with 

modifications for solution of unsteady flow fields about 

detonated cylindrical bodies. 

Ransom et al. (14, 54, 55, 56) and Cline and Hoffman (57, 

58) developed a modified version of Butler's scheme for solu­

tion of chemically reacting, supersonic nozzle flows. In this 

scheme, streamlines are traced in the same manner as in the 

network of intersections of streamlines and reference planes= 

A degree of freedom in the choice of the four bicharacteristics 

was also introduced in this scheme. Good comparisons of numer­

ical solutions and experimental data are presented by Ransom 

et al. (56) for supersonic flow in super-elliptical contour 

nozzles. Cline and Hoffman (57) have made comparisons of the 

pentahedral bicharacteristic line network and two inverse 

versions of the tetrahedral bicharacteristic line network. 

The pentahedral bicharacteristic line network was found to be 

the best overall scheme in terms of accuracy and computation 
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time required. 

D. The Present Numerical Method for 
Solut.'on of Cascade Flows 

The numerical method developed in this study for solution 

of steady transonic flows in turbine cascades is based on the 

method of characteristics for two-dimensional unsteady flow. 

Steady cascade flows are computed as the asymptotic limit in 

time of a transient solution. 

The present method is based on the pentahedral bicharacter-

istic line network developed by Butler (17). Butler's scheme 

was chosen because it is the only characteristic method in 

which 3econd"order accuracy is clearly maintained. Improve­

ments, some of which are due to Ransom (14), have been 

incorporated into the scheme. For completeness, Butler's 

general numerical method incorporating the infinite family of 

bicharacteristics is developed in Appendix B. Supporting 

material on the general theory of hyperbolic partial differ­

ential equations is included in Appendix A. The general 

numerical method presented in Appendix B, although not 

essential to the development of the numerical scheme for two-

dimensional unsteady flow, has been included for the reader 

interested in extending the method. 
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II. CHARACTERISTIC RELATIONS 

In this chapter the characteristic relations for plane 

two-dimensional unsteady flow of an inviscid fluid are 

developed. The characteristic property used in these develop­

ments is that particular linear combinations of the equations 

produce interior differential operators, called compatibility 

relations, on characteristic surfaces in the space formed by 

the two physical space coordinates and the time axis. A 

discussion of this characteristic property as applied to a 

general hyperbolic system of first-order partial differential 

equations is presented in Appendix A. For the comprehensive 

theory of hyperbolic systems of partial differential equations 

in three independent variables the reader is referred to 

Courant and Hilbert (59). 

The equations of motion for unsteady adiabatic flow of an 

inviscid fluid in two dimensions are the two Euler momentum 

equations, the continuity equation and the isentropic relation. 

7\ 

(2.1) 

( 2 . 2 )  
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p 3?̂ ;) + "1 IS- + u; . 0 (2.3) 

"1 "2 11= " <2-4) 

where Uj^ and Ug are the velocity components along the and Xg 

Cartesian coordinate directions, respectively, p is the static 

pressure, p is static density, s is specific entropy and t is 

time. Equation 2.4 states that entropy is conserved along a 

particle path: From the definition of acoustic speed, a, 

an expression equivalent to Eq. 2.4 is 

(2.5) 

^1 + ^2 + it - a^(ui + ̂ 2 ° (^.s) 

In the derivation of the characteristic relations 

consider the time axis as directed normal to the physical 

plane; also introduce the notation x^ = t. Any vector in 

the space (x^, x^, Xg) can be represented as the sum of two 

vectors, one lying in the physical plane and the other directed 

along the time axis, i.e., 

A^ = ai + {0, 0, A^} (2.7) 
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where 

— {A ,  ,  ,  0 }  ( 2 . 8 )  

The vector (lower case letter) is the physical component of 

A^. Let = {u^, , 1}? then the physical component 

u = {u^, u^, 0} is the velocity vector. With this notation, 

the equations of motion, Eqs. 2.1-2.3,- and 2.6 in matrix form 

are 

pu. 

po 
li 

L 

pu, 

pSzi 

'li 

Si 

u. 
1 

-a^U, I I 

3Ui~] 

9x. 
1 

3x. 
1 

i£_ 
3x. 

1 

9p 

= 0 

tJ 

where the repeated indices imply summation over the range 1 to 

3. (The elements of the coefficient matrix in Eq. 2.9 corre­

spond to the coefficients a^^^ in Eq. 10.1 of Appendix A.) 

B. Characteristic Surfaces 

Hyperbolic systems of partial differential equations in 

three independent variables have the property that particular 

linear combinations of the equations yield relations involving 
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differentiation in only two independent directions (see 

Appendix A). These two independent directions locally define 

a surface called a characteristic surface. A linear combina­

tion of the equations written on a characteristic surface is 

called a compati xity relation. 

The characte. istic surfaces for the system of equations, 

Eq. 2.% are obtained by solving for the left eigenvector which 

will reduce the system of equations to an interior operator on 

a surface. Multiplication of Eq. 2.9 by the left eigenvector > 

(Vi = 1,2,3,4) yields the single equation 

The coefficients of the derivatives in E-q= 2 = 10 are vectors of 

directional differentiation {W^ in Eq. 10.6). Equation 2.10 

reduces to an interior operator on a surface if the coefficient 

vectors are coplanar, or equivalently, if the scalar products 

of the coefficient vectors and a vector normal to the 

characteristic surface vanish, i.e., 

9u. 
p(U.w^ + pCO.Wj + «2^X3) 2i"3' 9 

1 

2 

(2.10) 

p(u^w^ + a^^Wg) Nu = 0 (2.11) 

p(UiW2 + 621^3! = 0 C2.12I 
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(U^W] - a U^w^) = 0 (2.14) 

The physical component of the characteristic surface normal is 

taken to be unity. Hence, 

n.ii = 1 (2.15) 

The system of equations, Eqs. 2.11-2.14, provides four equa­

tions for the four components of the left eigenvector, w^, and 

can be written in matrix form as 

pUiNi 0 p6,.N. 
ll 1 

pO.H. pSj.K. 

« 2  A  0 U.N. 
1 1 

0 U.N. -a U.N. 
11 11 

w. 

w. 

w. 

= u 

^4 

A nontrivial solution for exists if the determinant of the 

coefficient matrix in Eq. 2.16 vanishes. Expansion of the 

determinant of the coefficient matrix yields the character­

istic equation for the original system of equations, Eq. 2.9, 

as 
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(U.N^)^ {[U^U. - + ôg. Ggj)] N^N.} = 0 (2.17) 

The two distinct factors in Eq. 2.17 correspond to two dif­

ferent families of characteristic surfaces with normals 

(Appendix A). 

1. Characteristic flow surfaces 

Characteristic flow surface normals, , satisfy the 

equation obtained by setting the first factor in Eq. 2.17 equal 

to zero, i.e., 

= 0 (2.18) 

Equations 2.15 and 2.18 are two equations for the three 

components cf the normal . The remaining condition needed 

to determine is arbitrary. Therefore, rather than a 

uniquely determined normal, , an infinite family of normals 

exists. 

Simultaneous solution of Eqs. 2.15 and 2.18 yields the 

locus of endpoints of the normals N^. Equation 2.18 is the 

equation of a plane passing through the origin (see Eq. 16=6 

in Appendix G) whose orientation depends on the velocity 

components at a point, and Eq. 2.15 is that of a cylinder of 

unit radius whose axis lies along the axis. Therefore, the 

locus of endpoints of is the elliptic curve of intersection 

of the plane and cylinder shown in Figure 2.1. Since the 

plane of normals passes through the origin, all normals are 
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X 

Figure 2.1. Characteristic flow surface normals in two-
dimensional unsteady flow 
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Figure 2.2. Characteristic flow surface geometry in two-
dimensional unsteady flow 
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coplanar. 

At a point in space there exists an infinite number of 

characteristic flow surfaces corresponding to the infinite 

family of normals satisfying Eq. 2.18. The condition 

expressed by Eq. 2.18 is that the normals are orthogonal to 

the vector , as shown in Figure 2.2. Therefore, all 

characteristic flow surfaces contain U^, and the envelope of 

these surfaces is a degenerate surface or a curve locally 

tangent to U^. Let dS^ = {dS^, dSg, dS^} be a differential 

element of this curve; then according to Eq. 2.18 

where ds^ = tdS^, dSg, 0} is the physical component of dS^. 

If Eq. 2.19 is divided by dS^ and the resulting coefficients 

of n^ are set equal to the coefficients of n^ in the expanded 

form of Eq. 2.18, we get 

(2.19) 

dS 
1 

dS 
= u 

"1 
3 

(2.21) 

Elimination of dS^ from Eqs. 2.20 and 2.21 gives 

^^2 _ ^2 

dSi ~ u^ 
( 2 . 2 2 )  
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The condition expressed by Eqs. 2.20, 2.21 and 2.22 is that 

the vector dS^ lies along the particle path. Thus, the 

particle path, shewn in Figure 2.2, is the envelope of the 

infinite family of characteristic flow surfaces. 

2. Characteristic wave surfaces 

Normals to characteristic wave surfaces satisfy the 

vanishing of the second factor in Eq. 2.17, i.e., 

{U^Uj -  a^ (6^^ 6^^ + Ggj)} = 0 (2.23) 

Equation 2.23 is of the general form 

A..N.N =0 (A.. = A ) (2.24) 
J J -LJ JX 

which is the equation of a cone (cone of normals) with the 

vectors N^ directed along the generators (see Appendix G). 

Summation on repeated subscripts in Eq. 2.23 and substitution 

of Eq. 2.15 yields a quadratic equation in with roots 

u'iNi = + a (2.25) 

where the choice of the positive or negative root is arbitrary. 

The sign in Eq. 2.25 merely fixes the direction of along 

the generators of the cone of normals. 

The locus of endpoints of the characteristic wave 

surface normals is determined by simultaneous solution of 

Eqs, 2.15 and 2.25. Equation 2.25 is the equation of a plane 
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whose orientation in space depends on the magnitudes of the 

velocity components and acoustic speed at a point. With the 

normalization condition on the physical component of N^, Eq. 

2.15, the endpoints of lie on the elliptic curve of inter­

section of the plane, Eq. 2.25, and the unit cylinder, as 

shown in Figure 2.3. 

At any point in the (x^, , x^) space there exist an 

infinite number of characteristic wave surfaces with normals 

satisfying Eq. 2.23, This family of surfaces forms a 

curved conical envelope which is called the characteristic 

conoid. The conoid is locally tangent to the characteristic 

cone which is the reciprocal cone to the cone of normals. 

Tangent loci of the characteristic wave surfaces and the 

characteristic conoid are called bicharacteristics (see 

Appendix A). 

A differential clement of the oharacLexistic conoid is 

represented by the quadratic relation (Eq, 10.14 in Appendix A) 

A^j dx^dxj =0 (2.26) 

The differential vectors dx^ satisfying Eq. 2.26 are locally 

tangent to the bicharacteristics and lie along the generators 

of the characteristic cone. The coefficients A^^ in Eq. 2.26 

are obtained by constructing the matrix A with elements A^^ 

from Eq. 2.24 and determining the inverse matrix A ^. After 

considerable manipulation, the elements of A ^ can be written 
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Figure 2.3. Characteristic wave surface normals in two-
dimensional unsteady flow 

WAVE SURFACE 

CHARACTERISTIC 
CONE L:dx 

andx 
m; 

Figure 2.4. Characteristic wave surface geometry in two-
dimensional unsteady flow 
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in the form 

= 4 <Vj - Wlj - "2«U> 

+ dg.gg.} (2.27) 

Substitution of this result into Eq. 2.26 for and summation 

on repeated subscripts yields 

(dx^ - u^dx^)^ + (dXg - u^dx^)^ = (2.28) 

which is the equation of the real oblique cone shown in 

Figure 2.4. The base of the cone in the plane dx^ = constant 

is a circle of radius adx^ centered about the point {u^dx^, 

u^dx^, dx_}. This cone is the sonic cone and represents the 

local path of propagation of a disturbance generated at the 

origin. 

C. Compatibility Relations 

The compatibility relation, Eq. 2.10, is an interior 

operator on a characteristic surface and is determined by a 

linear combination of the equations of the original system, 

Eq. 2.9. For a particular characteristic surface, the 

components of the left eigenvector used in forming the 

linear combination are determined from Eq. 2.16 with 

appropriate conditions on the characteristic surface normal 

N^. Since Eq. 2.16 is homogeneous, the left eigenvector is 
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determined only to within an arbitrary scalar multiplier. The 

nuTiber of independent solutions for w^ is determined from the 

rank of the coefficient matrix in Eq. 2.16. 

1. Flow surface compatibility relations 

The vectors normal to a characteristic flow surface 

satisfy Eq. 2.18. Thus Eq. 2.16 for this case reduces to 

Ni N2 

pN, 

pN, 

.1 Wn 

W, 

W-

= 0 (2.29) 

The coefficient matrix in Eq. 2.29 is rank 2; therefore, two 

linearly independent solutions for w^ exist for each flow 

surface normal, yielding two linearly independent compatibility 

relations. From Eq. 2.29, w^ vanishes for both solutions, and 

the value of is arbitrary. The most obvious two independent 

solutions for w^ are one with w^ finite and the remaining 

components zero, and the other with w^ and w^ zero and w^^, Wg 

satisfying the equation, w^N^ + WgNg = 0. Since the system of 

equations Eq. 2.29 is homogeneous, we can write for the first 

solution 
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=  { 0 ,  0 ,  0 ,  1 }  ( 2 . 3 0 )  

For the second solution, if we let and , where 

s^ = {S^, S^, 0} is normal to n^^ (jus^ = 0), then 

=  { S ^ ,  S g ,  0 ,  0 }  ( 2 . 3 1 )  

The vector s^ lies in the characteristic flow surface and is 

directed along the curve of intersection of the surface with 

the physical plane, as shown in Figure 2.2. 

The compatibility relations corresponding to the left 

eigenvectors w^, Eqs. 2.30 and 2.31, are obtained by forming 

the coefficient vectors of the derivatives in Eq. 2.10 or by 

taking the linear combination of the equations of the original 

system, Eq. 2.9, with multipliers equal to the components of 

w^. Hence, the compatibility relation associated with the 

eigenvector given by Eq. 2.30 is simply the last equation of 

the original system, Eq. 2.6. In directional differential 

notation, this equation is written as 

dyP - a^d^p =0 (2.32) 

where U denotes the particle path direction, The 

compatibility relation corresponding to the eigenvector given 

by Eq. 2.31 is 

3u- 3u^ „ 

P SiOi âïÇ + p S,U. + s. . 0 (2.33) 
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or, in directional differential notation 

P S^dyU^ + p SgdyUg + dgP = 0 (2,34) 

where s denotes the direction. Equation 2.32 involves 

differentiation in a single direction, U^, while Eq. 2.34 

involves differentiation in two independent directions, and 

Si-

2. Wave surface compatibility relations 

The vectors normal to characteristic wave surfaces 

satisfy Eq. 2.25, i.e. 

= -a (2.35) 

where the negative root is arbitrarily chosen. In this case, 

Eq. 2.16 reduces to 

-pa 

N, 

-pa 

pN, 

pN. 

-a 

0 

-a 

w. 

w. 

w. 

w 

= 0 (2.36) 

The coefficient matrix in Eq. 2.36 is rank 3; therefore, only 

one solution for v/^ exists for each wave surface normal 

If we let w^ = 1, then solution for the remaining components 

w^^ in Eq, 2.36 gives 
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( 2 . 3 7 )  

The wave surface compatibility relation from Eq. 2.10 then 

becomes 

The fact that this equation involves directional derivatives 

within the wave surface can be verified by taking scalar 

products of the coefficient vectors of the derivatives and the 

wave surface normal N^. With incorporation of Eq. 2.35 these 

scalar products vanish, ensuring that Eq. 2.38 can be rewritten 

in terms of derivatives in only two independent directions. 

Equation 2.38 can be rewritten in terms of directional 

derivatives in two arbitrary independent directions in a 

characteristic wave surface. For the two directions we choose 

first, as shown in Figure 2.4, the bicharacteristic direction, 

locally tangent to the vector , 

T —  a-i> — \  9  ̂  y  J  
11 1 

and second the direction m^. 

pa(N^U^ + a 6 

(2.38) 

mi = (2.40) 
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locally tangent to the intersection of the characteristic wave 

surface and the physical plane. Note that the scalar products 

of the vectors and with the wave surface normal 

vanish, and that the vectors n^^ and are orthogonal. 

Equation 2.38 can be rewritten in a more compact form as 

p a ( n . U ^  +  a S ^ j )  ^  +  a o u )  ^  -  0  ( 2 . 4 1 )  

where the subscripts on 6^^ take values 1 and 2 ,  only. If the 

2 9u. 
term pa n.n. is added to and subtracted from Eq. 2.41, then 

pan (U. + an.) ^ + (u. + an.) + Pa^W. . -  n.n.)^^ = 0 
•' 1 1 1 

(2.42) 

The first two terms of Eq. 2.42 involve differentiation in the 

bicharacteristic direction, L^. After considerable algebraic 

manipulation, the product , according to Eq. 2.40, can be 

expressed as 

m.m. = 5.. - n.n. (2.43) 
1 ] 1] ] 1 

Hence, the wave surface compatibility relation, Eq. 2.42, can 

be written as 

p a n . C U .  +  a n . )  ^  +  ( U .  +  a n . )  | | -  +  p a ^ m . m .  ^  =  0  ( 2 . 4 4 )  
1 1 1 
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or, in directional differential notation, as 

2 
pan. dyU. + d-p + pa m. du. =0 (2.45) 

3 ij 3 ij J HI J 

where L and m denote the bicharacteristic and the iti^ 

directions, respectively. 

D. Interdependence of the Compatibility Relations 

There exists a double infinity of compatibility relations 

at a point in space written on two infinite families of 

characteristic surfaces. Since any compatibility relation is 

a linear combination of the four equations of motion in Eq. 

2.9, the maximum number of independent compatibility relations 

is four. Also, in forming a complete set of compatibility 

relations, a minimum of four relations must be considered. 

Many combinations of four compatibility relations can be 

formed. However, the interdependence of these combinations 

must be examined in order to obtain a complete set of 

independent relations. 

To examine the interdependence of any set of four 

compatibility relations, it is necessary to write out the 

matrix 

w^ = {wi, w^, w^, w^} (j = 1,2,3,4) (2.46) 

whose rows are the left eigenvectors associated with the 

particular compatibility relations considered. The number of 
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linearly independent compatibility relations is equal to the 

rank of the matrix described by Eq. 2.46. The rows of the 

matrix yielding the highest order nonzero determinant show 

which compatibility relations are independent. 

In order to determine the maximum number of linearly 

independent wave surface compatibility relations of the form 

of Eq. 2.45,we determine the rank of the matrix 

w j = {aN^, aN^, s}, 1} (j = 1,2,3,4) (2.47) 

whose rows are the left eigenvectors given by Eq. 2.37 for four 

different wave surface normals, (j = 1,2,3,4). Since the 

last two columns of this matrix are dependent, the rank is at 

most three; therefore, we examine the reduced matrix 

aN, aN, 

aN: 

,2  
' 2  

If the rows of this matrix are dependent, then the endpoints of 

the vectors n^ (n. = {N,, , 0}) lie on a straiaht line 
11 ± ^ 

(i.e., the two difference vectors obtained by subtracting two 

rows of the matrix from the remaining row are collinear). 

However, from Eq. 2.15, the endpoints of n^ lie on a circle of 

unit radius. Therefore, the rows of the matrix are independent 

and three linearly independent wave surface compatibility 
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relations exist. 

Since only three wave surface compatibility relations are 

independent, a complete set of four equations must include at 

least oi.e flow surface relation. The particle path relation, 

Eq. 2.32, is the only compatibility relation involving deriva­

tives of the density, p. Hence, Eq. 2.32 is independent of the 

other relations and must be included in any complete set of 

compatibility relations. 

It is now clear that a complete system of four compati­

bility relations can be formed from three wave surface rela­

tions and the particle path relation. This particular 

combination of compatibility relations is of interest in the 

development of the numerical integration scheme to be 

discussed in Chapter III. Other combinations of the compati­

bility relations can be used to form complete systems of 

equations. For a discussion of these combinations see Delaney 

and Kavanagh (60). 
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III. SECOND-ORDER NUMERICAL 

INTEGRATION SCHEME 

A. General 

Second-order accuracy is not easily achieved in the 

application of the method of characteristics to the numerical 

integration of hyperbolic systems of partial differential 

equations in three independent variables. That this is the 

case is because the compatibility relations, in general, 

involve differentiations in two independent directions on the 

characteristic surfaces. Thus, second-order finite-difference 

approximations to the compatibility relations, obtained by 

differencing along network lines in the numerical integration 

network, inherently contain cross-derivative terms at the 

solution point. Evaluation of these terms to maintain second-

order accuracy necessarily involves an outer iteration in which 

the entire solution surface is calculated a number of times, 

with cross-derivatives at the solution points updated after 

each iteration. The usual approach, however, as stated 

previously in the discussion of the characteristic numerical 

integration networks in Chapter I, has been to neglect the 

cross-derivatives at the solution point and to accept the 

attendant decrease in accuracy. 

Second-order accuracy is maintained in Butler's scheme 

(17) by elimination of cross-derivatives at the solution point. 
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In the original scheme proposed by Butler, the infinite family 

of bicharacteristics is employed and the cross-derivatives 

eliminated by weighted integration of the wave surface 

compatibility relations around the differential domain of 

dependence (Appendix B). In practical application, however, 

four wave surface compatibility relations corresponding to 

four equally spaced bicharacteristics are used in combination 

with the particle path compatibility relation and a non-

characteristic relation. In the system of difference relations, 

the cross-derivatives at the solution point appear in two terms 

common to all the equations. The cross-derivatives are 

eliminated by taking appropriate linear combinations of the 

equations. 

In this chapter, numerical solution procedures are 

developed for two-dimensional unsteady flow based on Butler's 

meLiiOu. Trie devel npmpnf çlnsely parallels that given by 

Ransom (14) for three-dimensional steady supersonic flow. 

Frequent reference is also made to the general numerical method 

contained in Appendix B. 

B= Parameterization of Bicharactcristics 

In the numerical scheme, the bicharacteristic direction is 

parameterized by introducing the following representation for 

the physical component of the wave surface normal vector; 
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= cosG + sin0 3^ (i = 1,2) (3.1) 

where and are orthonormal reference vectors lying in the 

physical plane at the vertex of the characteristic conoid. In 

Eq. 3.1, the parameter 0 is the polar angle measured from the 

direction, as shown in Figure 3.1. The angle 0 has the 

range 0 £ 0 < 2ïï. With this form for n^, the generators of the 

sonic cone lie along the directions (see Eq. 2.39) 

Li = Ui + a COS0 + a sin9 3^ (i = 1,2,3) (3.2) 

where the vector is locally tangent to the particle path, 

and a is the local acoustic speed. The parametric representa­

tion of a differential element of a bicharacteristic curve is 

thus 

d x ^  =  ( U +  a  COS0 ox + a sin0 B^) dt (3.3) 

(i = 1,2,3) 

where t is the time of travel of a disturbance along the 

bicharacteristic. The equation of a differential element of 

the particle path is found from Eq. 3.3 with the last two terms 

set equal to zero, i.e., 

dx^ = U^dt (i = 1,2,3) (3.4) 

Equation 3.3 is the parametric representation of the bi-

characteristics proposed by Butler. Butler fixed the 
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BICHARACTERISTIC 

CHARACTERISTIC 
CONE 

Figura 3.1. Characteristic cone, bicharacteristic parameter 
9, reference vectors and degree of 

freedom, ip, in orientation of the reference 
vectors in the plan; 
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directions of and along the coordinate axes, 

respectively, and allowed 6 to vary along the bicharacteristics. 

The approach used here, however, is that due to Ransom in which 

the degree of freedom in the rotation of the reference vectors 

a^, 6^ (the angle ij; in Figure 3.1) is used to maintain 9 

constant along the bicharacteristics. Ransom's approach 

results in a significant simplification of the numerical solu­

tion procedures. 

The particular choice of , and as reference 

vectors in the bicharactoristic parameterization, Eq. 3.3, 

ensures that the quadric equation of the differential conoid, 

Eq. 2.26, is satisfied. The conditions which must be satisfied 

by the reference vectors correspond to Eqs. 11.4 and 11.5 in 

Appendix B with = U^, = aa^, and = ag^. With these 

substitutions, Eqs. 11.4 and 11.5 yield 

aT^ U.a. = aT^ U.B. =  AT^a.B, = 0  (3,5) 
1] 1 ] 1] 1 ] 1] 1 ] 

and 

-A?! U.U, = a^ A~^ a.a. = a^ aT^ g.g. (3.6) 
ij 1 J 1] 1 ] 1] 1 ] 

where the coefficients A^ j are given by Eq. 2.27. Substitution 

-1 
of A^j from Eq. 2.27 into Eqs. 3.5 and 3.6 with and 3^ 

written as 
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= cos^ 6^^ + sin^ ( 3 . 7 )  

3^ = -sin^ 6^^ + cosijj Ggi ( 3 . 8 )  

where ̂  is the angle between and the axis, shows that 

Eqs. 3.5 and 3.6 are satisfied. 

One other condition must be satisfied by the reference 

vectors to ensure that the curve obtained by integrating Eq. 

3.3 for a particular value of 0 is the tangent locus between 

the characteristic wave surface and the characteristic conoid 

(i.e., the definition of the bicharacteristic). This condition 

is called the "bicharacteristic tangency condition" and is 

obtained from the general form, Eq. 11.15, with substitution 

from Eqs. 2.27, 3.7 and 3.8. The result is 

Equation 3.9 is used to determine the orientation of and 

at any point along a bicharacteristic relative to a fixed 

reference at the vertex of the conoid. 

now be written in terms of the bicharacteristic parameter 0. 

If the orthonormal properties of the vectors m^ and n^ are 

employed, m^ can be expressed as 

f7 Q\ 

xiic Wdvc auixauc L;umpaL,-Lijj. XJ. uy i-cj-a ^ ijy 

sin8a^ + cos0g^ (i = 1,2) ( 3 . 1 0 )  
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Substitution of Eqs. 3.1 and 3.10 into Eq. 2.44 for n. and m., 
11 

and utilization of the definition of the directional differ­

ential along the bicharacteristic direction yields the relation 

d-p + p a (cos6 a. + sin0 B. ) d^u. 
j-i J ] 1/ ] 

2 9 u« 
= -p a (-sin0 a. + ccs0 B.)(-sin0 a. + cos0 g. ) -r—2-dt 

J 3 1 1 ox^ 

(3.11) 

where the subscript L denotes the bicharacteristic direction. 

This particular form of the wave surface compatibility relation 

has the property that when written for 0 = 0, m/2, it, and 3tt/2, 

the derivatives of the dependent variables on the right-hand 

side of the equation appear in either one of the two groups of 

Ou. 3u. 
terms, a.a. or B-B- . The fact that Eq. 3.11 has this 

j l .  o X ^  ] X o X ^  

property is used in the numerical solution to eliminate the 

cross-derivative terms at the solution point. 

C. Difference Network 

The difference iieLwork (penLahedi'al bicharcicterisLic line 

network) consists of four equally spaced bicharacteristics 

corresponding to 0 = 0, ïï/2, tt , and 3ïï/2 and the particle path. 

As shown in Figure 3.2, a completely inverted scheme is used 

in which the solution point (5) is fixed in the new time plane, 



www.manaraa.com

51 

PARTICLE PATH 

BIÇHARACTERISTIC 
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INITIAL DATA SURFACE 

a. View showing bicharacterist ics, part icle path, and init ial 
data surface 

GRID POINT 
CELL 

/ 
{(i)(5)e 

t—Uto 0 
(6)} (3) 

VgL 

< 1 .—* , 0 

b. Projection onto initial data surface showing differential 
domain of dependence and grid point cell 

Figure 3.2. Interior or field point network 
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and the bicharacteristics and particle path are projected back 

to the initial data plane. Base points (1), (2), (3), and (4) 

lie at the intersections of the bicharacteristics corresponding 

to 6 = 0, ïï/2, TT, and 3n/2, respectively, and the initial data 

plane. Point (5) is the intersection of the particle path and 

the initial data plane. 

Base points are located by employing the finite-difference 

form of the appropriate direction equations. The finite-

difference form of the particle path equation, Eq. 3.4, using 

the modified Euler scheme (ref. 61), is 

x^(5) -= x^(6) - %{u^(6) + u^(5)} At (i = 1,2) (3.12) 

where the numbers in parentheses denote evaluation of the 

variables at corresponding points in the difference network, 

and ût is the time increment between the initial data plane 

and Lue suluiiun point, point (6). Similarly, the coordinates 

of points (1) through (4) are found from Eq. 3.3 written as 

x^{k) = x^(6) - %{u^(6) + a(6) cosô (k) a^(6) 

+ a(6) sin0(k) 3^ (6) + u^ (k) + a(k) cos9(k) (k) 

+ a(k) sin0(k) B^(k)} At (i = 1,2) (3.13) 

where k takes values 1, 2, 3, and 4. Initial estimates for the 

values of the dependent variables at points (1) through (6) 

appearing in Eqs. 3.12 and 3.13 are taken as those at solution 
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point on the initial data surface. 

The reference vectors a^, 3^ which appear in Eq. 3.13 must 

be established at point (6) and at the base points (1), (2), 

(3), and (4). The bicharacteristic tangency condition, Eq. 

3.9, is used to establish the reference vectors a^(k) and 3^(k) 

(k = 1,2,3,4), relative to the fixed reference at point (6). 

Because of the length, the development of the finite-difference 

form of this condition is omitted here, but has been included 

in Appendix C. The results for the tangency condition are the 

following two equations for the components of (k) (k = 1,2, 

3,4) obtained from Eqs. 12.35 and 12.36: 

a^(k) = DO) 3^(6) At + a^(6) [1 - D^(0) At^]^ (3.14) 

agtk) = D(0) ggtG) At + OgCG) [1 " D^(e) At^]^ (3.15) 

where 

D(6) = [o^(6) COS0 + B^(6) sinBj 

9u.(6) 
X [3.(6) cosB - a.(6) sin8] -v— 

J J oXj 

+ [6 . ( 6 )  cose - 0 . ( 6 )  sine] (3.16) 
J J j 

and where 8 takes values 0, TT/2, IT, and 3ir/2 corresponding to 

9u. (6) 
k = 1,2,3, and 4, respectively. The derivatives ^— and 
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—^ appearing in Eq. 3.16 are computed to sufficient order 

of accuracy at the solution point (6) location on the initial 

data surface (see Appendix C) . The derivatives ^ are 

evaluated in terms of derivatives of pressure and density from 

the property relation, in functional form, 

a = a(p,p) (3.17) 

Differentiation of Eq. 3.17 according to the chain rule yields 

9a(6) _ 9a 9p(6) , 3a 3p(6) ^ o\ 
- 3? + 3? -fe— <3-18' 

Following the solution for a^(k), the components g^(k) are 

determined using the orthonormal properties of the reference 

vectors and i.e., 

a^(k)B^(k) =0 (i = 1,2) (3.19) 

6, (k)B^(k) =1 (i = 1,2) (3.20) 

Equations 3.19 and 3.20 provide two conditions for the two 

comnonent-s nf R. fkï. 
• 1 " • 

Once the base points (1) through (5) have been located, 

the dependent variables at these points are determined using 

bivariate interpolations on the initial data surface. For this 

purpose, second-order polynomials are fitted by the method of 

least squares to a nine-point cell consisting of the solution 
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point and eight neighboring points. 

D. System of Difference Equations 

The system of differentia] equations, which is the basis 

of the finite-difference integration scheme, consists of four 

wave surface compatibility relations, Eq. 3.11 written for 

0 = 0, ïï/2, IT, and 3it/2, the particle path compatibility 

relation, Eq. 2.32, and a non-characteristic relation. From 

the previous discussion on the interdependence of compatibility 

relations in Section II.D, this system of six equations would 

appear to be overdetermined. However, in the numerical integra­

tion scheme the differential relations are replaced by finite-

difference equations in which two terms involving derivatives 

of the velocity components at the solution point are treated 

as additional unknowns. Thus, in forming the difference 

3+- -j r\n c +- hcs 4 f f /ti >-Oi n +- -i a I y"o Isfimnc a r> vH a-r- r\f -h h /=» 

system is increased from four to six, and the resulting dif­

ference equations form a complete set of six equations. 

The noncharacteristic relation involved in the system of 

difference equations is obtained by eliminating the derivatives 

of density from the continuity equation, Eq. 2.3, and the 

isentropic relation, Eq. 2.6, the result being 

^ 9u, 9u-
duP + pa I?;; + iz;) at = 0 (3.21) 
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where U denotes the particle path direction, U^. Equation 

3.21 can be written in an equivalent form involving the 

reference vectors 3^ as 

2 • 
dyp + pa (OjO^ + BjB^) dt = 0 (3.22) 

This noncharacteristic relation is used to eliminate the terms 

3 u  ( 6 )  a u . ( 6 )  
"9x— ^i^i —9x— which appear in the system of 

i J i 

difference equations. 

The system of difference equations is obtained by writing 

the differential relations in Eqs. 2.32, 3.11 and 3.22 in 

finite-difference form using the modified Euler scheme. The 

wave surface compatibility relation, Eq. 3.11, is written in 

finite-difference form along the bicharacteristic direction as 

2tp(6) - p(k)] + {p(6) a(6)[cos0(k) a^(6) + sin0 (k) 3^(6)] 

+ p (k) a(k) [cos0(k) a^(k) + sinO (k) 6^ (k) ] } [u^ (5) - u^{k)] 

= -{p(6) a^ (6) [-sin0 (k) (6) + cos8(k) B j (6) H-sin6 (6) a^(6) 

( 6 )  ,  
+ cos0(k) 3^(6)] — + p(k) ar(k) [-sin0 (k) a^'(k) 

9u . (k) 
+ cos0(k) B j (k) ] [-sine (k) (k) + cos9 (k) B^k)] ——}At 

(3.23) 
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where k (k = 1,2,3,4) denotes the base point at the inter­

section of the bicharacteristic and the initial data plane. 

With substitution of 0 (k) values of 0, n/2, tt, and 3tt/2 into 

Eq. 3.2 3 and rearrangement to put unknowns at point (6) on the 

left side of the equation, we obtain the following four wave 

surface compatibility relations; 

2 p(6) + [p(6) a(6) a^(6) +  p  (1) a(l) a^(l)] u^(6) 

+  [ p (6) a(6) OgCG) +  p (l) a(l) UgtG) 

^ 9u. (6) 
+  p (6) a^(6) 3.(6) 8.(6) At 

j  

= 2 p(l) + [ p (6) a(6) 4^(6) + p  (1) a(l) 0^(1)] u^(l) 

+  [ p (6) a(6) GgfS) + p (l) a(l) a^d)! U2(l) 

-  p  (1) a^(l) {g^fl) [B^(l) 

au^fi) 
+ 92(1) At (3.24) 
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p(6) + [p(6) a(6) 6^(6) + p(2) a(2) 6^(2)] u^(6) 

+  [ p ( 6 )  a ( 6 )  G g t G )  +  P ( 2 )  a ( 2 )  ^ ^ { 2 ) ]  U g t G )  

n 9u. (6) 
+ p(6) a/(6) 0.(6) a^(6) — At 

^ i 

2 p(2) + [p(6) a(6) B^(6) + p (2) a(2) R^f2)] u^(2) 

+ [p(6) a(6) 82(6) + P(2) a(2) GgfZ)] ^2(2) 

. 3u (2) 3u (2) 
- p(2) a^(2) (0^(2) ra^(2) + «2(2) ] 

3u (2) 3u_(2) 
+ «2(2) [0^(2) + «2(2) -g| ]} At (3.25) 

p(6) - I p (6) a(6) 0^(6) + p (3) a(3) «^(3)] u^(6) 

- [p(6) a(6) ^2(6) + p(3) a (3) 0^(3)] U2(6) 

. 9u (6) 
p(6) ar(6) ey(6) 6^(6) At 

2 p(3) - [p(6) a(6) a^(6) + p(3) a(3) a^O)] u^(3) 

- LP (6) a (6) a,(6) + p(3) a(5) agiS)] Ugfj) 

. 9u,(3) 9u,(3) 
- P(3) a^(3) (3^(3) [g^(3) + 63 (3) 1 

3u,(3) 9u_{3) 
+ 9,(3) [^(3) + BgO) -5-^—]^ At (3.26) 
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2 p(6) - [p(6) a(6) 8^(6) + p(4) a{4) 6^(4)] u^(6) 

[p(5) a(6) 62(6) + P(4) a(4) Ggf*)] U g l ô )  

- 9u . (6 ) 
+ p(6) a^(6) a.(6) a^(6) At 

2 p(4) - [p(6) a(6) 3^(6) + p(4) a(4) B^(4)] u^(4) 

- [p{6) a(6) 62(6) + p(4) a(4) 

. 9u, (4) 9u, (4) 
- p(4) aM4) {a^(4) [a^(4) + a^(4) ] 

9u (4) 9u (4) 
+ 0^(4) [a^(4) + «2(4) ]} At (3.27) 

The finite-difference form of the noncharacteristic relation, 

Eq. 3.22, written along the particle path with unknowns at 

point (6) on the left side of the equation is 

. 3u.(6) 
2 p(6) + p(6) a: (6) a. (6) a, (6) At 

j  j -

. au.(6) 
+ p(6) ar(6) 6.(6) 6^(6) — At 

, 9uu(5) 3u_(5) 
= 2 p(5) - p(5) a^(5)[-gi— + ] (3.28) 
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Examination of Eqs. 3.24-3.28 reveals a total of five unknowns 

o 8u.(6) 
considered: p(6), u^(6), UgfG), p(6)a (6)3^(6)0^(6) — At, 

2 au.(6) 
p(6)a (6)a.(6)a.(6) At. Therefore Eqs. 3.24-3.28 

J ^ 

comprise a complete system of five nonlinear difference 

equations for the five unknowns. The system of equations is 

displayed below as a matrix equation with an abbreviated nota­

tion for the coefficients: 

2 0 1 

2 Cg 1 0 

2 B3 C3 0 1 

2 B^ C4 1 0 

2 0 0 1 1 

p(6) 

( 6 )  

9u. (6) 
p( 6 )  a^ ( 6 )  0. ( 6 )  a, ( 6 )  — At 

i 
] ' ' 1 • • "txj 

FTN , ( K I I I 

p(6) a^(6) 6.(6) 6.(6) J ' "  At  
J 1 "X " 5 

L J 
(3.29) 

The last two unknowns, involving cross-derivatives of the 

velocity components at the solution point; are of no interest 

in the solution. These two terms are eliminated by taking 

appropriate linear combinations of the equations in Eq. 3.29, 

with the result 
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0 C^-Cj p(6) 
^1-^3 

0 Bz-B, C2-C4 "^(6) F2-F4 

4 6^+62+62+8^ 0^+02+0^+0^ U g f G )  F1+F2+F3+F4-2FS 

(3.30) 

Solution for the primative variables u^(6), U2(6), and p(6) is 

easily obtained from Eq. 3.30. 

Finally, the density, p(6), is determined from the particle 

path compatibility relation, Eq. 2.32, which when put into 

finite-difference form and solved for p(6) is 

p(6) = 2[p(6) - p(5)]/[a2(6) + + p(5) (3.31) 

where the acoustic speed, a, is determined from Eq. 3.17. 

E. Iteration Scheme 

A predictor-corrector iterative scheme is used in the 

numerical solution. In the predictor step, the solution at 

point (6) is computed using estimates for the unknowns which 

appear in the coefficients of the difference equations. For 

this purpose, the values of the dependent variables at all 

points in the difference network are assigned the values at the 

solution point on the initial data surface. Subsequently, the 

solution is corrected using the predicted values of the 

dependent variables at point (6) and interpolated values of the 

dependent variables at the base points (1) through (5) in the 
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difference equations. The corrector step is repeated until 

successive values of the dependent variables at point (6) 

agree to within a specified tolerance. This technique yields 

a solution, in which the local truncation error is third order 

in time step. 

The reference vectors a^(k), (k) (k = 1,2,3,4) are 

determined relative to their assumed orientation at point (6) 

from Eqs. 3.14-3.20. Note that these relations do not depend 

on data at points in the difference network but are solely 

functions of the dependent variables and their derivatives at 

the solution point on the initial data surface. Hence, the 

reference vector calculations are performed first in the 

numerical algorithm and are not involved in the iterative part 

of the solution. 

In each iteration step, the base points (1) through (5) 

nc-i nrr i •*"00+-•» ors cirn-» ta+-S rvr>G Vrrc IV a r»ri '< ( ^ 

The values of the dependent variables, u^, U2, p, and p and the 

3u, 3u, 9u^ 9u^ 
derivatives -5-^, and at the base points in the 

o jC ̂  C/ 2 0 w & ̂  o 2 

initial data plane, as needed in the difference equations, 

Eqs. 3.24-3.28, are then evaluated using bivariate interpola­

tions (Appendix H). Finally, the values of the dependent 

variables u^(6), UgfG), p(6), and p(6) are obtained from Eqs. 

3.30 and 3.31. 
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F. Accuracy Studies 

Studies were undertaken to determine the order of accuracy 

of the numerical method. Since rigorous analytical methods do 

not exist for determining the order of nonlinear difference 

schemes, the order of the truncation error and, hence, the 

order of accuracy of the method was estimated numerically. 

The truncation error order was estimated by comparing the 

results of the method at different time increments with exact 

solution^ for; (1) steady source flow, and (2) Prandtl-Meyer 

flow over a cylinder. Since these flows were steady, any 

change in the transient solution with time was attributed to 

round-off and truncation errors. To minimize round-off error, 

all check cases were computed to 16 significant digits. 

In setting up the transient solution, a square cell of 

nine points was constructed in the flow field with the solution 

point at the midpoint of the cell. The grid spacing was 

determined by using the smallest spacing allowed by the Courant-

Friedrichs-Lewy stability criterion for a given time increment 

(see Appendix D). The dependent variables at the cell points 

Oil the initial data surface were determined from the exact 

solutions for steady source flow and Prandtl-Meyer flow over a 

cylinder presented in Appendix E. 

The order of the truncation error was determined by 

doubling the time increment and comparing the ratio of the 
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time increments raised to the assumed order of the method. The 

local truncation error in the numerical method was assumed to 

be third-order in time step; thus, if the time increment were 

doubled, the theoretical truncation error would grow by a 

factor of 8. The process of doubling the time increment is 

shown schematically in Figures 3.3 and 3.4 for the source flow 

and Prandtl-Meyer flow, respectively, where the cell points and 

the differential domains of dependence are shown for three time 

increments. 

1. Source flow accuracy study 

In the source flow accuracy study, the Mach number along 

the upstream circular arc with radius r^^ in Figure 3.3 was 

= 1.2, and the solution point was located as shown at r/r^ = 

1.25. The results of the study are presented in Table 3.1 in 

terms of percent error and relative error in the static 

pressure for three time increments. The results indicate that 

the order of the method is greater than the assumed second-

order. Similar results were obtained for different orienta­

tions of the initial data cell in the flow field obtained by 

•rri+-3-t-i nnc ahnnf -t-ho cnln-t-inn T->r>ir>+- TVio r<r>TtiT-HTt-oH hirrVio-r 

accuracy compared to that assumed in the method is due to the 

relatively small property gradients which exist in this one-

dimensional flow case. 
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CASE 1 CASE 2 CASE 3 

Figure 3.3. Steady source flow accuracy study 

Different time increments showing grid point 
cell, differential domain of dependence, and 
upstream reference station, r^. = 1.2; 

solution point location, r/r^ = 1.25 

Table 3.1. Results of steady source flow accuracy study 

Case (1) (2) (3) 

Relative time increment 12 4 

Error in static pressure (%) 0.0023 0.0331 0.6440 

Relative error (ratio to case 1) 1 14.53 283.02 

Theoretical relative error 1 8 64 



www.manaraa.com

66 

CASE 1 

•j-fTTT ' I ' I ' ' rrry-

CASE 3 CASE 2 

Figure 3.4. Prandtl-Meyer flow accuracy study 

Different time increments showing grid point 
cell, differential domain of dependence, and 
cylinder surface. = 1.2, (j)^ = 3ÏÏ/4; 

solution point location, r/r^ = 1.25, ^ = tt/2 

Table 3.2. Results of Prandtl-Meyer flow accuracy study 

Case (1) (2) (3) 

Relative time increment 12 4 

Error in static pressure (%) 0.0404 0.3213 5.4021 

Relative error (ratio to case 1) 1 7.96 64.91 

Theoretical relative error 1 8.00 64.00 
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2. Prandtl-Meyer flow accuracy study 

Prandtl-Meyer flows have highly two-dimensional spatial 

character and, hence, provide a more severe test than source 

flows regarding the accuracy of the numerical method. 

In the accuracy study for Prandtl-Meyer flow over a 

cylinder, the Mach number at an upstream reference point (1) 

on the cylinder with polar angle = 3tt/4 was = 1.2 (see 

Appendix E for a description of reference point (1) location). 

The solution point was located, as shown in Figure 3.4, at 

r/r^ = 1.25, ({) = ïï/2, where r^ is the radius of the cylinder. 

The results of the accuracy study are presented in Table 3.2. 

In this example, the results indicate third-order truncation 

error. Again, comparable results were obtained with the 

initial data cell rotated to various positions in the flow 

field about the solution point. 

G. Numerical Stability Studies 

In the numerical solution of hyperbolic systems of 

partial differential equations, the possibility of numerical 

instability always exists. Numerical instability refers to 

the unbounded growth of errors in the numerical solution. In 

Appendix Û, two stability criterion; (1) the Courant-Friedrichs 

Lewy criterion, and (2) the von Neumann criterion are applied 

to the numerical method. 
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The Courant-Friedrichs-Lewy (CFL) stabi l i ty cri terion 

states that the differential domain of dependence must l ie 

within the convex hul l  of the difference scheme. In the 

present scheme,, the convex hul l  is the outer boundary of the 

nine point cel l ,  shown in Figure 3.2, used for interpolation 

in the init ial data plane. The CFL cri terion l imits the 

maximum al lowable t ime step which can be taken between solution 

planes and is a necessary condit ion for stabil i ty which must be 

satisf ied at al l  solution points. 

The numerical scheme was found to be stable by the 

von Neumann cri terion which states that a numerical scheme is 

stable only i f  there is a f inite l imit to the amplif ication of 

any Fourier component of the init ial data. This condit ion 

requires that the spectral radi i ,  p(A), of the amplif ication 

matrix. A, for the difference equations satisfy the inequali ty 

p  ( A )  < 1 + 0  ( A t )  ( 3 . 3 2 )  

for al l  possible combinations of Fourier components of the 

init ial data. The von Neumann cri terion is a suff icient 

condit ion for stabil i ty of l inear difference equations. For 

the case of nonlinear difference equations, the suff iciency of 

this condit ion is not guaranteed; however, the approach taken 

is to l inearize the equations and to apply the same cri terion 

locally. 
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IV. CASCADE BOUNDARY POINT NUMERICAL PROCEDURES 

A. General 

Developed next are the numerical procedures for calcula­

tion at boundary points in the solution of cascade flows. 

These procedures, used for solution at blade surface boundary 

points, upstream boundary points, downstream boundary points 

and blade trailing-edge points, are special adaptations of the 

interior point calculation developed in Chapter III. In the 

following discussions, a basic understanding of cascade 

geometry and aerodynamics on the part of the reader is assumed; 

see Classman (62). 

The cascade configuration of interest consists of an 

infinite number of blades. Identical flow fields exist in each 

blade passage, and the flows upstream and downstream of the 

cascade are periodic with a period equal to one blade space. 

Accordingly, the cascade flow problem is solved by considering 

the flow through one blade passage with periodic flow boundary 

conditions imposed upstream and downstream of the cascade. 

The cascade solution grid, shown in Figure 4.1, consists 

of uniformly spaced parallel panels of grid points in the x̂ -̂

direction. The bounding panels A-B upstream and G-H down­

stream are located sufficiently far from the cascade that uni­

form distributions of flow properties along these boundaries 

may be assumed. The spacing of panels is selected such that 

the leading and trailing edge planes of the cascade, C-D and 
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Figure 4.1. Cascade solution grid 
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E-F, respectively, are constant-x^ panels. Points C and D in 

Figure 4.1 are points of tangency of the blade profiles and the 

cascade leading edge plane; points E and F are the inter­

sections of the blade mean camber line and the trailing edge 

plane of the cascade. Uniform spacing of grid points along 

constant-x^ panels is assumed between bounding constant - x 2  

panels A-C, B-D upstream and F-H, E-G downstream, and between 

the blade surfaces inside the blade passage. 

The boundary point calculation schemes were developed with 

the objective of modeling the transient phenomena for develop­

ing flow in cascades. The inviscid fluid assumption is used 

in body point calculations at points on the blade profile, 

i.e., the flow is assumed tangent to the blade surface. In the 

upstream boundary point calculation, specification of the 

stagnation state and u^ velocity component (whirl) distribution 

along the boundary A-B in Figure 4 = 1 is as seamed. This calcula­

tion can be applied to either subsonic inlet flow, or super­

sonic inlet flow with subsonic axial velocity component, u^. 

In the downstream boundary point calculation, the static 

pressure distribution along the boundary G-H in Figure 4.1 is 

assumed known. This condition sets the flow through the cascade 

analogous to the physical situation in which a throttle valve 

is positioned downstream of the cascade. The blade trailing 

edge point calculation is applied at points E and F in Figure 

4=1 and, as described later, is based on an approximate model 

of the blade wake. 
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The cascade flow periodicity requirement for points up­

stream and downstream of the cascade is enforced along the 

c o n s t a n t - x g  p a n e l s  A - C ,  B - D ,  E - G ,  a n d  F - H  i n  F i g u r e  4 . 1 .  

Calculations at grid points along these panels (excluding the 

endpoints) employ the interior point scheme developed in 

Chapter III. The periodic flow condition, however, requires 

special treatment of the grid point cells used for initial data 

interpolations; discussion of these cells is deferred until 

Chapter V where the overall solution algorithm is presented. 

In ail the boundary point calculation schemes, the differ­

ential domain of dependence lies partially outside the solution 

space with at least one of the bicharacteristics in the usual 

interior point scheme missing. This results in fewer compati­

bility relations available for solution for the dependent 

variables u^, Ug, p, and p at the boundary points. Solutions 

at "he boundary points are obtained, tnRre-rore,- by supple­

menting the compatibility relations with the specified boundary 

conditions and orienting the reference vectors a^, 6^ at the 

solution point to position particular bicharacteristics in the 

solution space. 

In the following discussions of the boundary point schemes, 

only the solution of the compatibility relations and the non-

c h a r a c t e r i s t i c  r e l a t i o n  f o r  t h e  d e p e n d e n t  v a r i a b l e s  u ^ ,  u ^ ,  p ,  

and p is covered. Base points are located in the same manner 

as the interior point scheme using the particle path direction 
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equation, Eq. 3.12, and the appropriate forms of the bi-

characteristic direction equation, Eq. 3.13. Also reference 

vectors a^, 6^ at bicharacteristic base points are determined 

from Eqs. 3.14-3.20. The characteristic network point 

numbering system is the same as in the interior point scheme 

with bicharacteristic base points (1), (2), (3), and (4) 

c o r r e s p o n d i n g  t o  t h e  p a r a m e t e r i z a t i o n s  9  =  0 ,  t t / 2 ,  t t ,  a n d  3 i t / 2 ,  

r e s p e c t i v e l y ;  t h e  p a r t i c l e  p a t h  b a s e  p o i n t  i s  a g a i n  p o i n t  ( 5 ) ,  

a n d  t h e  s o l u t i o n  p o i n t  i s  p o i n t  ( 6 ) .  

Finally, the perfect gas assumption was used in the 

development of the upstream boundary point calculation. This 

assumption was not needed in the development of the remaining 

boundary point calculations. However, in the actual cascade 

fle"Q inve^ «-lyaced, a perfect gas was assumed. 

B. Body Point Calculation 

The solution point (6) of the body point difference net­

work lies in the body surface (blade profile), as shown in 

Figure 4.2, Three bicharacteristics and the particle path, 

with base points (1), (2), (3), and (5) in the initial data 

surface, are used in the finite-difference solution. At the 

solution point (6), the reference vectors a^(6), 3^(6) are 

oriented with 6^(6) assigned the direction of the body surface 

inward normal n^(6) to give three bicharacteristic base points 

in the solution space. 
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s!character!st!c 

solid 
boundary 

particle path 

\ ^base point 

initial data surface 

a. View showing bicharacteristics, particle path, solid 

boundary, and initial data surface 

r"' i 

SOLID 
dm imhady 

b. Projection onto initial data surface showing differential 

domain of dependence and grid point cell 

Figure 4.2. Body point network 
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The system of difference equations used to determine the 

dependent variables u^(6), UgfG) and p(6) includes the three 

wave surface compatibility relations, Eqs. 3.24-3.26, and the 

noncharacteristic relation, Eq. 3.28. The relation needed in 

addition to these is the flow tangency condition at the solu­

t i o n  p o i n t  ( 6 ) ,  i . e . .  

u ^  ( 6 ) n ^ ( 6 )  =  0  (4 .1 )  

This system of equations can be written as a matrix equation, 

similar to Eq. 3.23, as 

2 0 1 

2 bg cg 1 0 

2 83 0 1  

0 5, cj 0 0 

p  ( 6 )  

u ^  ( 6 )  

"2(6) 

.  ( 6 )  
p ( 6 )  a ^ ( 6 )  a . ( 6 )  a .  ( 6 )  A t  

j ^ 

2 0 0 1 1 
?  2 u . ( S )  

p ( 6 )  a ^ ( 6 )  6. ( 6 )  6 ^ ( 6 )  

( 4 . 2 )  

At 

i i i 

F 

in which the fourth equation is now the flow tangency condition= 

Elimination of the last two unknowns, involving derivatives at 

the solution point, from Eq. 4.2 yields the system 
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0 c^-cj p (6) f1-f3 

4 bj^+asj+bj c +2c2+cj (g) = f1+2f2+f3-2f5 (4.3) 

^4 =4 u2!6)_ 0 

From Eq. 4.3, the solutions for p{6), u^(6), and UgfG) can 

easily be obtained. Density, p(6), is obtained from the 

isentropic relation, Eq. 3.31, written along the particle path. 

C. Upstream Boundary Point Calculation 

The upstream boundary point calculation is employed along 

the panel A-B in Figure 4.1. In the difference network, 

consistent with the body point calculation, the reference 

vector pair a^(6), is oriented with 6j^(6) along the 

outward normal,- n^(6),- to the solution space, as 3hcv;n in 

F i g u r e  4 . 3 .  

In the cascade flow applications investigated here, sub­

sonic inlet flow is assumed. In this case, the differential 

domain of dependence for point (6) lies partially upstream of 

the inlet boundary, and the particle path projects outside the 

solution space, as shown in Figure 4.3. Point (2) in the usual 

interior point scheme is the only base point lying inside the 

solution space, and, therefore, only one wave surface 

compatibility relation is available in the solution. The 

remaining conditions needed are supplied as boundary conditions» 
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b1 characteristic 

base point 

upstream' 

boundary initial data surface 

a. View showing bicharacteristics, particle path, upstream 

boundary, and initial data surface 

upstream 

boundary-

/ 

\ 
\ 

lr\ \ 

grid point 
cell 

b. Projection onto initial data surface showing differential 

domain of dependence and grid point cell 

Figure 4.3. Upstream boundary point network 
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In the present scheme, it is assumed that the stagnation 

pressure, p^, stagnation temperature, , and the u^ velocity 

component distributions along the upstream boundary are given. 

Thus, the remaining primative variables u^ (6), p(6), p(6) are 

determined in the solution. 

The applicable wave surface compatibility relation for the 

single bicharacteristic with base point (2) is Eq. 3.25. Sub­

s t i t u t i o n  o f  a ^ ( 6 )  =  { 0 , 1 } ,  a n d  B ^ ( 6 )  =  { - 1 , 0 }  i n t o  E q .  3 . 2 5 ,  

followed by rearrangement to put unknowns on the left side of 

the equation yields 

2  p ( 6 )  +  [ p ( 2 )  a ( 2 )  9 ^ ( 2 )  -  p ( 6 )  a ( 6 ) ]  u ^ ( 6 )  

=  2  p ( 2 )  +  [ p ( 2 )  a  ( 2 )  6 ^ ( 2 )  -  p  ( 6 )  a ( 6 ) ]  u ^ ( 2 )  

9 u  ( 6 )  

+  p ( 2 )  a { 2 )  & 2 < 2 ) [ u2 ( 2 )  -  U g f G ) ]  -  p ( 6 )  a ^ ( 6 )  g /  A t  

p aui(2) 5u,(2) 

a  ( 2 )  '  ^ 2 ' ^ '  ~ d x ^  ^  

3 u _ ( 2 )  3 u , ( 2 )  

+  0 , ( 2 )  [ a ,  ( 2 )  +  G , ( 2 )  - 5 3  H  A t  ( 4 . 4 )  
^  X  0  6  0 ^ 2  

au-(6) 
The derivative —r in Eq. 4.4 is treated as a known quantity 

dx2 

on the right sJ.de of the equation and is obtained from the 

given distribution of u^ along the upstream boundary. 

From the definitions of stagnation pressure and tempera­

ture, and acoustic speed, we are able to write for a perfect 

gas that 
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3 ^ ( 6 )  =  a ^ ( 6 )  +  [ u j ( 6 )  +  U g t G ) ]  ( 4 . 5 )  

and 

Pq (6) = p (6) [1 + (— ( 4 . 6 )  

In Eq. 4.7, (6) is the acoustic speed based on stagnation 

temperature. Both Pq (6) and a^ (6) are known from the given 

inlet stagnation conditions. Density, p(6), is found from 

the perfect gas relation 

Equations 4.4, 4.5, and 4.6 comprise a system of three 

e q u a t i o n s  f o r  t h e  u n k n o w n s  u ^ { 6 ) ,  a  ( 6 ) ,  a n d  p ( 6 ) .  

Alternative to specification of inlet Ug distribution, the 

distribution of inlet flow angle (i.e., the ratio u^/u^) has 

b e e n  f r e q u e n t l y  p r e s c r i b e d  i n  c a s c a d e  f l o w  s o l u t i o n s  ( r e f .  9 ) .  

However, in the case of finite location of the upstream 

boundary, it appears more reasonable to prescribe the whirl 

velocity (Ug) distribution, and to solve for the resultant 

axial velocity (u,) distribution^ Also,- in the case of super­

sonic flow with subsonic axial velocity component, specifica­

tion of inlet flow angle would violate the unique incidence 

p r i n c i p l e  ( r e f .  6 3 ) .  

P ( 6 )  =  ( 4 . 7 )  

ar(6) 
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Finally, for supersonic inlet flow with supersonic axial 

velocity component the differential domain of dependence lies 

entirely upstream of the boundary. In this case no boundary 

points can be computed, and the distributions along the boundary 

of all the dependent variables u^, U2, p and p must be 

specified. 

D. Downstream Boundary Point Calculation 

The downstream flow boundary is specified as the panel G-H 

in Figure 4.1, At a solution point (6) on the boundary, 

reference vectors a^(6), 6^(6) are orientated with Bj_(6) along 

the outer normal to the solution space. 

The exit flow condition of interest is that with subsonic 

axial velocity component. As shown in Figure 4.4, the domain 

of dependence for the solution point (6) positions itself with 

base points (1),- (2),- (3), and (5) within the solution spacc 

upstream of the boundary. With one bicharacteristic of the 

usual interior point scheme missing, a boundary condition must 

be specified. Hence, in the downstream boundary point calcula­

tion the distribution of static pressure along the downstream 

boundary is assumed known. 

The compatibility relations are Eqs. 3.24-3.26, and the 

n o n c h a r a c t e r i s t i c  r e l a t i o n  i s  E g .  3 . 2 8 .  R e w r i t i n g  E q s .  3 . 2 4 -

3.26 with a^iS] = {0,-1}, g.(6) = {1,0}, and rearranging to put 

the unknowns on the left side of the equations, we obtain 
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a. View showing bicharacteristics, particle path, downstream 

boundary, and initial data surface 
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NT 
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Projection onto initial data surface showing differential 

domain of dependence and grid point cell 

Figure 4.4. DownstreaJti boundary point network 
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[ p ( l )  a ( l )  0 ^ ( 1 ) ]  u ^ ( 6 )  +  [ p ( l )  a ( l )  a ^ { l )  -  p ( 6 )  a ( 6 ) ]  U g f G )  

- 9u.(6) 
+  p ( 6 )  a i  ( 6 )  3 . ( 6 )  B .  ( 6 )  A t  =  2  [ p ( l )  -  p ( 6 ) ]  

+  [ p ( l )  a ( l )  a ^ ( l ) ]  u ^ ( l )  +  [ p ( l )  a ( l )  a ^ U )  -  p { 6 )  a ( 6 ) ]  U g f l )  

n  3 u , ( 1 )  3 u , ( 1 )  

-  p ( l )  a ' ( l ) { B , ( l ) [ g , ( l )  - ^ 3  

3u (1) 3u„(l) 

+  B 2 ( 1 ) [ B ^ ( 1 )  +  6 2 ( 1 )  ] } A t  ( 4 . 8 )  

[ p ( 5 )  a ( 6 )  +  p ( 2 )  a  ( 2 )  3 ^ ( 2 ) ]  u ^ ( 6 )  +  [ p  ( 2 )  a  ( 2 )  ^ ^ ( 2 ) ]  ^ ^ ( 6 )  

, au.(6) 
+  p ( 6 )  a / ( 6 )  0 . ( 6 )  a ^ ( 6 )  A t  =  2  [ p ( 2 )  -  p ( 6 ) ]  

i -  [ p ( 6 )  a ( 6 )  +  p ( 2 )  a  ( 2 )  3 , ( 2 ) ]  u ,  ( 2 )  +  [ p  ( 2 )  a  ( 2 )  3 ^ ( 2 ) ]  % ^ ( 2 )  

9 u ,  ( 2 )  S u ,  ( 2 )  

-  p { 2 )  a - ( 2 ) { a ^ ( 2 )  [ a ^ ( 2 )  +  a^{2) ] 

3 u  ( 2 )  3 u , ( 2 )  
+  « 2  1 2 )  [ 0 , ( 2 )  +  0 ^ ( 2 )  ] }  A t  ( 4 . 9 )  
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-  [ p ( 3 )  a { 3 )  0 ^ ( 3 ) ]  u ^ ( 6 )  -  [ p ( 3 )  a C 3 )  a ^ O )  -  p  ( 6 )  a ( 6 ) ]  U g f G )  

n 9u. (6) 
+  p ( 6 )  a ^ ( 6 )  B . ( 6 )  B ^ ( 6 )  —  A t  =  2  [ p ( 3 )  -  p ( 6 ) ]  

-  [ p ( 3 )  a ( 3 )  0 ^ ( 3 ) ]  U j ^ { 3 )  -  [ p ( 3 )  a ( 3 )  -  p ( 6 )  a ( 6 ) ]  U g t S )  

o  3 u , ( 3 )  9 u , ( 3 )  

-  p ( 3 )  a ^ 3 ) { 6 i ( 3 )  I B , ( 3 )  ^  6 3 ( 3 )  - j ^ l  

9 u  ( 3 )  9 u , ( 3 )  

+  B g f S )  [ G i ( 3 )  - g l  +  6 2 ( 3 )  A t  ( 4 . 1 0 )  

Equation 3.28 becomes 

j 8u.(6) 
p ( 6 )  a r ( 6 )  o y ( 6 )  a ^ ( 6 )  A t  

j 9u.(6) 
+  p { 6 )  a  { 6 )  g . ( 6 )  B . ( 6 )  —  A t  

- oil (^1 ctij lb,' 
=  2  [ p ( 5 )  -  p ( 6 )  ] -  p ( 5 )  a / ( 5 )  [  ]  ( 4 . 1 1 )  

The system of Eqs. 4.8-4.11 rewritten as a matrix 

e q u a t i o n ,  a g a i n  s i m i l a r  t o  E q .  3 . 2 9 ,  i s  
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0 1 

b; c, 1 0 

b, c, 0 1 

0  0  1 1  

Two equations can be obtained from Eq. 4.12 

( 6 )  f1-f3 

3^+232+3^ C^+2C2+C2 = 
F1+2F2+F3-2F5 ( 4 . 1 3 )  

which can be easily solved for u^(6), UgfG). Density p(6) is 

f o u n d  f r o m  E q .  3 . 3 1 .  

In the case of supersonic exit flow with snpersonic axial 

velocity component u^, the domain of dependence lies entirely 

upstream of the downstream boundary. Hencm, the distribution 

of static pressure cannot be specified, and the downstream 

boundary point calculation becomes simply the interior point 

calculation. 

E. Trailing Edge Boundary Point Calculation 

The role of viscosity cannot be ignored in the solution of 

cascade flows. In the real flow, boundary layers grow along 

the pressure and suction surfaces of the blades and coalesce at 

U j ^ ( 6 )  
^1 

U 2  ( 6 )  
^2 

P ( 6 )  a 2 ( 6 )  a .  ( 6 )  ou (6) 

3 u .  ( 6 )  

At 
^3 

P ( 6 )  a 2 ( 6 )  a .  ( 6 )  ou (6) At 
^3 

P ( 6 )  3 ^ ( 6 )  6 j ( 6 )  6 i ( 6 )  

3 u . ( 6 )  

At 
^5 

P ( 6 )  3 ^ ( 6 )  6 j ( 6 )  6 i ( 6 )  
3x^ 

At 
^5 
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the trailing edge to form the blade wakes. It is precisely the 

shedding of the blade surface boundary layers at the trailing 

edge that sets the circulation and thus the loading on the 

blades. A steady, inviscid flow analysis in which no account­

ing is made for the real flow effects at the trailing edge 

would yield simply the zero l ift solution. 

The classical criterion used to set the steady circulation 

o n  l i f t i n g  b l a d e s  o r  a i r f o i l s  i s  t h e  K u t t a  c o n d i t i o n  ( s e e  r e f .  

54). The Kutta condition, developed from experimental observa­

tions, states that the circulation for the flow past an air­

foil is of strength just sufficient to cause the flow to leave 

the airfoil smoothly at the trailing edge. For the academic 

case of blades with cusped trailing edges, the Kutta condition 

requires the velocities on the pressure and suction surfaces to 

be equal at the trailing edge point. For real blade profiles 

with rounded trailing edges, the Kutta condition is generally 

imposed by. setting the position of the stagnation point on the 

blade surface in the trailing edge region according to some 

additional criteria (see ref. 65). Unfortunately, no accepted 

method based on a universal model or correlation of the 

trailing edge flow is available to determine the location of 

the stagnation point. 

The following discussion outlines the blade trailing edge 

calculation used in the present method. The scheme is based on 

an approximate model of the blade wake in steady flow. As noted 
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before, the trailing edge point (points E and F in Figure 4.1) 

is located at the intersection of the blade mean camber line 

and the trailing edge plane of the cascade. This particular 

location was selected since it approximates the midpoint of 

the wake in the trailing edge plane. The flow direction at 

this point is taken as the direction of the blade mean camber 

l i n e  a t  t h e  t r a i l i n g  e d g e ,  a s  s h o w n  i n  F i g u r e  4 . 5 .  

The blade trailing edge point calculation is similar to 

the body point scheme. The difference network, shown in 

Figure 4.5, involves three bicharacteristics with base points 

(1), (2), (3) and the particle path with base point (5). The 

reference vectors a^(6), B^(6) are oriented with a^(6) directed 

along the trailing edge plane of the cascade. With this 

particular orientation of the reference vectors, the solution 

at point (6) depends on initial data on both sides of the blade 

surface as indicated by the locations of the bicharaeteristio 

base points in Figure 4.5. The system of difference equations 

for the dependent variables u^ (6), u^(6), p(6) is given in 

Eq. 4.3 where now the vector n^(6) satisfying Eq. 4.1, and 

shown in Figure 4.5, is the unit normal to the blade mean 

camber line at the trailing edge. Density p(6) is obtained 

f r o m  E q .  3 . 3 1 .  

In the wake model, it is assumed that the flow separates 

from the blade at the points of tangency of the blade pressure 

and suction surfaces and the trailing edge circle. The flow 
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directions at these points, shown as dashed lines in Figure 

4.5, are tangent to the blade surfaces. It is also assumed 

that the pressure, density, and magnitude of velocity do not 

vary across the wake in the trailing edge plane. The variation 

o f  v e l o c i t y  a c r o s s  t h e  w a k e  i s  s h o w n  i n  F i g u r e  4 . 5  w i t h  u ^ ( P )  

the velocity on the pressure side, and u^(S) the velocity on 

the suction side. Following the solution at point (6), the 

velocity vectors uu(P) and u^(S) are obtained by simply 

rotating u^(6), as shown in Figure 4.5. Next, the finite 

t h i c k n e s s  o f  t h e  w a k e  i s  n e g l e c t e d ,  a n d  t h e  v e c t o r s  u ^ ( 6 ) ,  

uu(P), and u^(S) are assumed to pass through point (6). The 

variation in flow angle through the wake is accounted for only 

in the flow solutions at points , P^, P^, P^, shown 

in Figure 4.5. The solution data p(6) and p(6) along with 

u^(S) or u^(P) are used in the initial data plane for the solu­

tions at the points just noted. That is, the interpolation 

polynomials in the flow solutions at points , S^, and 

incorporate (S) at point (6) in the grid point cells; the 

i n t e r p o l a t i o n  p o l y n o m i a l s  i n  t h e  f l o w  s o l u t i o n s  a t  p o i n t s  P ^ ,  

^2* and P^ incorporate u^(P) at point (6) in the grid point 

cells. 

F. Closure 

The body point, upstream boundary point, and downstream 

boundary point calculations were tested using simple one-
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dimensional unsteady flow examples. Three examples of 

transient duct flows were solved, and the results of these 

solutions are presented in Appendix F. Where available, the 

results of other solution methods were used for comparison.. 

The comparisons with the computed results indicate that the 

boundary point schemes yield accurate transient and asymptotic 

steady state solutions. 
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V. OVERALL NUMERICAL ALGORITHM FOR 

SOLUTION OF CASCADE FLOWS 

Essential aspects of the overall numerical algorithm for 

solution of steady cascade flows are discussed. The overall 

algorithm consists of the repetitive application of the 

interior and boundary point calculations in successive time 

planes over the cascade grid, with the solution starting from 

prescribed data at grid points in the initial data plane. The 

solution is advanced in time with the steady state boundary 

conditions imposed until the asymptotic steady state solution 

is obtained. 

A. Normalized Variables 

Steady cascade flows are computed by applying steady inlet 

stagnation property and whirl velocity distributions along the 

upstream boundary of the cascade solution grid, and steady dis­

charge static pressure distributions along the downstream 

boundary. If, in addition, the imposed distributions of 

stagnation pressure and density are uniform along the upstream 

boundary, it is convenient to define normalized (primed) 

dependent variables 

— — 

Poi 

^01 
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u 
u ;  =  — —  ( 5 . 2 )  

^1 

pqi 

P' = =2- (5.3) 
Pqi 

p '  =  ( 5 , 4 )  
p o i  

where and are the upstream stagnation pressure and 

density, respectively. Use of the normalized variables yields 

steady state solutions independent of the values of the up­

stream stagnation state properties. Also, the upstream stagna­

tion pressure and density become simply 

pjj^ = 1.0 (5.5) 

P q ^  =  1 . 0  ( 5 . 6 )  

B. Initial Conditions 

The values of the four dependent variables u|, , p' and 

p' must be specified at all grid points in the initial data 

plane. For this purpose, any reasonable distributions of the 

variables consistent with the blade surface tangent flow 

condition may be used. In the cascade flow solutions reported 

in Chapter VI, zero upstream whirl velocity component was 
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specified. In this case it was convenient to specify the up­

s t r e a m  s t a g n a t i o n  c o n d i t i o n s  t h r o u g h o u t  t h e  f l o w  f i e l d ,  i . e .  

u ^  =  0 . 0  ( 5 . 7 )  

u ^  =  0 . 0  ( 5 . 8 )  

p '  =  1 . 0  ( 5 . 9 )  

p '  =  1 . 0  ( 5 . 1 0 )  

and to start the flow by imposing uniform steady downstream 

pressure, p^, along the downstream boundary. The resulting 

transient solution is similar to the physical situation in 

which a valve is instantaneously opened downstream of the 

cascade. 

C: Tnitial Data Ceils 

Bivariate interpolating polynomials (see Appendix H) are 

used to determine initial data (u|, u^, p', p') at base points 

in the interior and boundary point characteristic networks. 

The polynomials locally fit the initial data at nine grid points 

consisting of the solution point on the initial data plane and 

eight neighboring points. Thus, a cell of nine points is 

assigned to each grid point for construction of interpolating 

polynomials. Typical cells are shown in Figure 5.1. 
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w 

Figure 5.1. Cascade solution grid showing typical grid point 
cells 
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The assignment of cell points is based on the order of 

points in a rectangular grid point stencil. Each point in the 

solution grid is identified by indices I, J, with I taking 

successive integer values for constant-x^ panels starting with 

I = 1 on the upstream boundary. The index J takes values cor­

responding to the point number along each constant-x^ panel 

starting with J = 1 on the lower boundary of the cascade grid. 

The nine point cell for an interior grid point consists 

of the point and eight neighboring points in the grid point 

stencil (I,J) . Interior point cells are illustrated in Figure 

5.1 where dots indicate the interior grid points considered, 

and the shaded areas cover the corresponding cells. As shown 

in Figure 5.1, this scheme results in distorted cells within 

the blade passage. This distortion of the cells was found to 

have negligible effect on the accuracy of the interpolating 

polynomials. 

Boundary points along the upstream and downstream 

boundaries are assigned the same cells as the adjacent interior 

points along constant-Xg panels, again as indicated in Figure 

5.1. Also, as can be seen, blade surface boundary points 

(excluding the leading and trailing edge points) are assigned 

the same cells as the adjacent interior points along constant-

x^ panels. 

The periodic flow requirement for points upstream and 

downstream of the cascade is enforced along the bounding 

constant-X2 panels (periodic boundaries) by proper assignment 
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of cell points and initial data. As indicated in Figure 5.1, 

a panel of pseudo grid points is added outside the solution 

space along the periodic boundaries. These pseudo points are 

located one mesh spacing Ax^ from the periodic boundaries. The 

grid point cells for points along the periodic boundaries 

(excluding the endpoints of the boundaries) consist of the 

point on the boundary and the eight nearest neighbors. Also, 

for cell construction at the leading and trailing edge points, 

pseudo blade surface points are added outside the solution 

space along the first constant=x^ panel inside the blade 

passage. The cells for the leading and trailing edge points 

are constructed as shown in Figure 5.1 with three of the nine 

points on the blade surface. 

Data at all pseudo points are set equal to the correspond­

ing data at grid points lying one blade pitch from the points 

in the direction. 

D. Time Step Regulation 

The time increment between successive solution planes is 

regulated such that the Courant-Fredrichs-Lewy (CFL) stability 

criterion is satisfied at all grid points. According to 

Equation 13.3 the maximum allowable time step at each point is 

a function of the local velocity and acoustic speed and the 

minimum distance to the convex hull of the difference scheme. 

Equation 13.3 is used to calculate a maximum time step at each 
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mesh point, and the minimum of these values is taken as the 

integration step size. Following the solution for the new 

time plane, the maximum allowable time step is recalculated 

at all points from Equation 13.3 using the solution plane data. 

The minimum of these values, At', is compared with the integra­

tion step size. If At' exceeds the integration step size, the 

solution plane is recalculated with the integration step size 

s e t  e q u a l  t o  A t ' .  

The criterion used for determining convergence of the 

transient solution to the steady state solution is based on 

the fact that stagnation pressure is constant in steady 

isentropic flow fields. The definition of total pressure, 

written in terms of the normalized variables, is 

where a' is the normalized acoustic speed, obtained from the 

perfect gas relation 

E. Convergence Criterion 

* *  '  ~à 
.  /  V  / V -  I  

( 5 . 1 1 )  

-\h 

a ml 
p' 

( 5 . 1 2 )  
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The values of total pressure are calculated at all grid points 

on each solution plane from Equation 5.11. When values at all 

g r i d  p o i n t s  a g r e e  v , ' i t h  t h e  i n l e t  t o t a l  p r e s s u r e ,  p ^ ^ ^  =  } . 0 ,  t o  

within a specified tolerance, the solution is assumed to be 

converged. 
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VI. CASCADE FLOW EXAMPLES 

The computed results for two cases of steady flow through 

a turbine cascade are presented. These solutions were obtained 

as limit solutions at large time of the transient flow analysis. 

The first case presented involves subsonic flow throughout 

the cascade. The second example involves subsonic inlet and 

discharge flows, but with transonic flow over a portion of the 

cascade passage. In both cases, the results are compared with 

e x p e r i m e n t a l  c a s c a d e  d a t a  g i v e n  b y  H u f f m a n  e t  a l .  ( 6 6 ) .  

A. Cascade Geometry and Solution Grid 

The turbine cascade is shown in Figure 4.1. The blade 

profiles shown are representative of turbine nozzles in current 

aircraft engine designs. The geometry data for the cascade are 

tabulated in Table 6.1, and associated nomenclature is 

d e s c r i b e d  i n  F i g u r e  6 . 1 .  

The cascade solution grid in Figure 4.1 consists of 41 

uniformly spaced constant-x^ panels with 12 points along each 

panel. The distances from the cascade to the upstream and 

downstream boundaries are one-half the axial blade chord, C^. 

Twenty-one constant-x^ panels are located from the leading edge 

to the trailing edge of the blades, and 10 constant-x^ panels 

are located upstream and downstream of the cascade. 
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MEAN CAMBER LINE 

SUCTION SURFACE 

PRESSURE SURFACE 

THROAT 
/ 

AXIAL DIRECTION 

Figure 6.1. Cascade nomenclature 

Table 6.1. Cascade geometry data 

Blade spacing, S 

Blade chord, C 

Axial chord, 

Axial distance from leading edge to throat 

location on suction surface 

Stagger angle, y° 

Blade leading edge mean Ccimber angle, 

Blade trailing edge mean camber angle. Kg 

1 . 3 5 6  i n .  

1.800 in. 

1.200 in. 

0 . 7 9 0  i n .  

•49.85 deg. 

0.00 deg. 

-65.00 deg. 
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B. Subsonic Flow Case 

In this example, the steady state boundary conditions 

were prescribed as; (1) zero whirl velocity component along the 

upstream boundary, and (2) uniform normalized static pressure 

P2 = 0.685 along the downstream boundary. The initial data at 

all grid points were set equal to the stagnation state condi­

tions (i.e., u| = 0.0, U2 = 0.0, p' = 1.0, p' = 1.0). Approxi­

mately 1400 time steps were required to obtain the steady state 

solution. The computed steady flow results are presented in 

F i g u r e s  6 . 2 - 6 . 5 .  

In Figure 6.2, the computed values of blade surface static 

pressure p' are plotted versus normalized distance along the 

blade, x/C^. Also presented are the experimental cascade data. 

Good agreement between the numerical solution and the experi­

mental data is shown. In both the computed and test data, the 

luwest value of pressure occurs on the blade suction surface 

near the throat location (x/C = 0.59). The pressure distribu­

tion on the blade pressure surface indicates approximately 

uniform flow for x/C < 0.5, followed by accelerated flow to 

the trailing edge. On the blade suction surface the reverse is 

true; that is, accelerated flow is indicated upstream of the 

throat, with nearly uniform flow downstream of the throat. 

Velocity vectors at every other point in the solution 

grid are shown in Figure 6.3. Large velocity gradients are 

observed upstream of the passage throat, while downstream of 
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Figure 6.2. Blade surface static pressure distribution, p' 

Subsonic flow case; p.i, = 0.6 85 
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Figure 6.3. Velocity vector field 

Subsonic flow case? = 0.585 
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Figure 6.4. Contours of static pressure p' 

S u b s o n i c  f l o w  c a s e ;  =  0 . 6 8 5  
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Figure 6.5. Contours of Mach number 

Subsonic flow case; = 0.685 
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SÎIM: 

Figure 6.6. Schlieren photograph of cascade flow field 

S u b s o n i c  f l o w  c a s e ;  p ^  =  0 . 6 8 5  
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the throat an approximately uniform distribution of velocity 

can be seen. The velocity distribution around the leading edge 

o£ the blade indicates that the stagnation point is located on 

the pressure surface of the blade. In the region of the up­

stream boundary the velocity gradient in the axial direction 

is approximately zero. This tends to support the assumption of 

uniform whirl velocity distribution along the upstream boundary. 

The nonuniform distribution of axial velocity component along 

the upstream boundary is due to the influence of the blades on 

the upstream flow. 

A contour plot of computed normalized static pressure, p', 

over the flow field is presented in Figure 5.4. The highly 

two-dimensional character of the flow is indicated. The maxi­

mum pressure gradients occur near the passage throat, with the 

minimum pressure occurring on the blade suction surface near 

the throat location. Upstream of the cascade a nearly nniforr^i 

pressure distribution is shown. At the downstream boundary the 

axial pressure gradients are approximately zero. This supports 

the assumption made of uniform static pressure along the down­

stream boundary. 

Lines of constant Mach number in the flow field are shown 

in Figure 6.5. The contours indicate rapidly accelerating flow 

around the blade leading edge on the suction surface, and 

relatively uniform flow on the pressure surface near the 

leading edge. Also, an approximately uniform distribution of 
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Mach number is shown downstream of the throat on the blade 

suction surface. At the upstream boundary, the contour lines 

are nearly horizontal, indicating essentially zero Mach number 

gradient in the axial direction near the boundary. The Mach 

number gradient shown along the upstream boundary, however, is 

substantial, and, as stated previously, is due to the finite 

location of the boundary. A nearly uniform distribution of 

Mach number is indicated in the region of the downstream 

boundary. 

A schlieren photograph of the cascade flow field is 

presented in Figure 6.6. In this photograph, the mean flow 

angle in the blade wake is approximately equal to the blade 

mean camber angle at the trailing edge which was the assumption 

made in the blade trailing edge calculation. The general 

agreement of the numerical solution and experimental data 

presêuted lu Figure 6.2 liiuicaLes Lhe blade wake model was 

adequate. 

C. Transonic Flow Case 

The boundary conditions for this cascade flow example were 

the same as in the subsonic flow case except that the down­

stream normalized pressure, p^, was reduced to 0.578. In this 

case the flow accelerates to the transonic regime in the blade 

passage, thus providing a test for the numerical solution 

method regarding mixed flow prediction capability. The initial 
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data for the transient solution were taken from the steady 

state solution in the subsonic flow case. Approximately 1000 

time steps were required to obtain the steady flow solution at 

the new downstream pressure. The computed steady flow results 

a r e  p r e s e n t e d  i n  F i g u r e s  6 . 7 - 6 . 1 0 .  

The computed blade surface pressure distribution is com­

pared in Figure 6.7 with the experimental cascade data. 

Agreement between the computed results and the experimental 

data is good over most of the blade surface. However, on the 

blade suction surface for x/C^ > 0.5 the numerical solution 

predicts a much smoother pressure distribution than the experi­

mental data shows. The, discrepancy in pressure distributions 

is likely due to the close proximity of the cascade to the 

imposed uniform pressure distribution along the downstream 

boundary in the numerical solution. In support of this con-

w J.W1X f ju J. j. uuc xii 

Figure 6.9 that a large axial pressure gradient exists along 

the downstream, boundary = McDonald (9) determined that with 

uniform specification of downstream pressure in high Mach 

number flows it is necessary to maintain a minimum distance 

equal to the axial blade chord between the cascade and the 

downstream boundary. As shown in Figure 6.7, the pressure 

level on the blade suction surface indicates supersonic flow 

downstream of the throat. Also, the minimum blade surface 

pressure does not occur at the blade throat as in the subsonic 
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Figure 6.8. Velocity vector field 

Transonic flow case; = 0.578 
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Figure 6.9. Contours of static pressure p' 

Transonic flow case; p^ = 0.578 
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Figure 6.10. Contours of Mach number 

Transonic flow case; = 0.578 
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Figure 6.11. Schlieren photograph of cascade flow field 

Transonic flow case; p^ = 0.578 
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flow case (see Figure 6.2), but further downstream at the loca­

tion x/C^ = 0.9. This movement of the minimum pressure point 

downstream of the throat is indicative of the fact that super­

sonic flow has been established. Comparison of Figure 6.7 with 

Figure 6.2 for the subsonic flow case shows substantially 

higher blade loading in the transonic flow case, with the 

majority of the loading increase occurring on the rear half of 

the blade. 

The velocity vector field for this example is presented in 

Figure 6.8. These results resemble those presented in Figure 

6.3 for the subsonic flow case. The influence of the blades on 

the upstream velocity distribution is again evident. Also the 

leading edge stagnation point appears to be located in approxi­

mately the same location as in the subsonic flow case. One 

difference that can be seen is the increased velocity level 

which paviGl-c Hr>T.7r»c+-'r*aam r\+* -f-H a 

The contour plot of normalized static pressure, p' , is 

presented in Figure 6.9. As in the subsonic flow case (see 

Figure 6.4), a nearly uniform distribution of static pressure 

exists upstream of the cascade. The contour line distributions 

in Figures 6.4 and 6.9 are very nearly the same upstream of the 

passage throat indicating that both flow cases are close to the 

choked condition. Much higher pressure gradients are shown 

downstream of the passage throat in the transonic flow case. 

Also, as stated above, the minimum pressure point location has 

moved downstream to a point near the blade trailing edge on the 
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suction surface. 

Lines of constant Mach number in the flow field are shown 

in Figure 6.10. The supersonic flow region is located on the 

blade suction surface near the trailing edge. Again, the con­

tour line distribution upstream of the throat is nearly the 

same as that in Figure 6.4 for the subsonic flow case. 

In the schlieren photograph presented in Figure 6.11, a 

weak normal shock is shown on the blade suction surface near 

the trailing edge. Evidence of this shock wave is also shown 

in the experimental blade surface pressure distribution pre­

sented in Figure 6.7 where a rapid rise in pressure exists on 

t h e  s u c t i o n  s u r f a c e  d o w n s t r e a m  o f  t h e  l o c a t i o n  x / C  =  0 . 9 .  
X 

This shock wave has been smeared out in the numerical solution, 

as indicated in the contour plots presented in Figures 6.9 and 

6.10 . 
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VII. CONCLUSIONS AND RECOMMENDATIONS 

A method of characteristics numerical integration scheme 

iiaving second-order accuracy has been developed for solution of 

two-dimensional unsteady flows in gas dynamics. The method has 

been applied to steady transonic flow analysis in turbine 

cascades with the steady state solution computed as the 

asymptotic limit in time of a transient solution. 

Computed results of the cascade analysis are in good 

agreement with experimental data. The results indicate that 

the present numerical method lends itself to accurate treatment 

of cascade boundary conditions and yields accurate mixed-flow 

solutions. It is concluded that the added complexity involved 

in the formulation and programming tasks with the method of 

characteristics over finite-difference methods is justified. 

The developed analysis method provides a useful and effective 

tool for the turbomachinery aerodynamicist in the design of 

high Mach number blading. 

The success of the present method in solution of blade-to-

blade flows in turbine cascades suggests that the method could 

be applied as well to other steady or unsteady two-dimensional 

flow problems. Flows in two-dimensional nozzles and diffusers 

could be solved by an essentially straightforward application 

of the method. Also, axisymmetric internal flows could be 

handled with only minor modifications. Furthermore, the method 

could be extended for solution of blade-to-blade and hub=to=tip 
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flows on arbitrary stream surfaces in rotating blade rows. 

Although no effort was made to consider flows with strong 

shocks, it appears that shock wave tracing capability could be 

added to the overall algorithm. Application to supersonic 

flows in compressor cascades, including entrance region and 

through-flow analyses, would require the addition of such 

shock wave tracing procedures. 

The following recommendations for further study on the 

present numerical method are made: 

(1) It was found that the bicharacteristic tangency 

condition was not needed to maintain second-order 

accuracy in the flow solutions considered, and the 

reference vectors at bicharacteristic base points 

could be simply assigned their directions at the 

solution point. Cline and Hoffman (57) came to the 

sarae coiiclusioa in applyina Butler's scheme to tlitee-

dimensional steady supersonic flows. It should be 

noted, however, that this observation concerning the 

bicharacteristic tangency condition is based solely 

upon numerical experience with the method and has 

not been verified analytically. Further study is 

needed to substantiate this finding. 

( 2 )  M a x i m u m  e r r o r s  i n  t h e  c o m p u t e d  s t a g n a t i o n  p r e s s u r e s  

in the steady flow cascade solutions occurred at the 

boundaries of the cascade flow field. These errors 
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may be due to the fact that the solution points at 

the boundaries were located at the edges of the 

corresponding grid point cells where maximum error 

in least square interpolations would occur. The 

interpolation error may be reduced by introducing 

higher terms into the least square interpolating 

polynomials for the boundary points. Other inter­

polation procedures for the boundary points should 

also be investigated. 
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X. APPENDIX A: 

GENERAL THEORY OF QUASI-LINEAR HYPERBOLIC 

PARTIAL DIFFERENTIAL EQUATIONS 

The general theory of hyperbolic systems of partial dif­

ferential equations as needed in the development of the general 

numerical method (Appendix B) is presented. Also presented is 

supporting theory for the development of characteristic rela­

tions previously used in Chapter II for plane two-dimensional 

unsteady flow. The theory and its development is that due to 

Rusonov (67) and Ransom (14). 

A. Characteristic Surfaces 

Consider a general system of n quasi-linear, hyperbolic, 

partial differential equations in n dependent variables u^ 

 ̂  ̂ /"y  ̂ J  ̂̂ J ̂  ̂ Xm — — - -.1-1 J- — • -

} V i- u . X / = b (ii,v = 1 , 2 , . .  fin i \  
yvi p 

where a^^^ and b^ are known functions of u^ and x^. The 

summation convention is used with repeated subscripts unless 

otherwise stated. Greek subscripts run over the range 1 to n, 

while Latin subscripts have the range 1 to 3. The system of 

equations, Eq. 10.1, is a complete set, i.e., n equations 

having n dependent variables. 
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If the independent variables are considered as coordinate 

axes in a three-dimensional space, then any set of real 

numbers {a^, ag, a^} represent components of a vector a^^ in 

the space. The directional differential of any arbitrary 

f u n c t i o n  f ( x ^ )  a l o n g  a ^ ,  d e n o t e d  b y  d ^ f ,  i s  

d ^ f  =  a .  I I -  d T  ( 1 0 . 2 )  

i  

where T is a parameter increasing in the direction of a^, and 

h a s  m a g n i t u d e  l / | a ^ | .  

Consider next a linear combination of the equations of 

t h e  system formed by taking the scalar product of Eq. 10.1 and 

t h e  l e f t  e i g e n v e c t o r  ( y  =  1 , 2 , . . . , n )  

3u 

Vlivi 9ÏÏ- " Vu ° 
1 

If we let 

and 

"vi ~ %%vi — 

B = w^b^ (10.5) 

then Eq. 10.3 can be written in directional differential 

notation as 

d ^  u ^  =  B  d i  ( 1 0 . 6 )  
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According to Eq. 10.4 there are n vectors and their 

orientation in space depends on the elements of 

The hyperbolic character of the original system of equa­

tions is revealed by posing the following question: is it 

possible to choose the elements of w^ such that the resulting 

vectors are linearly dependent or, in other words, such 

that the vectors lie in a plane? For hyperbolic systems 

of equations such values for the elements of w^ exist. The 

plane containing the vectors is called a characteristic 

plane, and its normal is called a characteristic normal. A 

surface in space which is everywhere tangent to a character­

istic plane is called a characteristic surface. The values of 

the dependent variables cannot be arbitrarily specified on a 

characteristic surface since they must satisfy a compatibility 

relation, Eq. 10.6, written on this surface. 

If is 2 characteristic ricrir.al then the corxdiLion that 

all vectors lie in the characteristic plane corresponding 

to N. is 
X 

N i  = 0  (V =  1 , 2 , . . . , n )  ( 1 0 . 7 )  

o r ,  m a k i n g  u s e  o f  E q .  1 0 . 4  

"i "u %vl = 

where and w^ are to be determined. Equation 10.8 is a 

system of linear homogeneous equations for the elements of the 

left eigenvector. If a nontrivial solution for exists. 
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then the determinant of the coefficient matrix with elements 

a  , . N .  m u s t  v a n i s h ,  i . e . ,  
p v i  1  

det (a = 0 (10.9) 

which is an nth order polynomial in the components of . 

Equation 10.9 is called the characteristic equation of the 

original system of partial differential equations, and it 

yields a condition that must be satisfied by any character­

istic normal. 

B. Characteristic Surface Geometry in Gas Dynamics 

Two-dimensional unsteady flows, and three-dimensional 

steady supersonic flows in gas dynamics, are governed by 

systems of quasi-linear hyperbolic partial differential equa­

tions in three independent variables. In both cases the 

characteristic equation factors as follows into a repeated 

linear factor and a symmetric quadratic factor 

^ij^i^j ° (10.10) 

where n is the order of the original system of equations. The 

vanishing of either factor in Eq. 10.10 satisfies the equation 

and, therefore, two different types of characteristic surfaces 

e x i s t .  
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1. Characteristic flow surfaces 

Characteristic flow surface normals, ,  satisfy the 

equation obtained by setting the first factor in Eq. 10.10 to 

z e r o ,  i . e . ,  

= 0 (10.11) 

where is a function of the dependent variables u ̂  (v = 

l,2,...,n). According to Eq. 10.11, at a point in space the 

normal is any one of the infinite family of vectors which 

l ie in a plane orthogonal to the vector Thus, character­

istic flow surfaces are locally tangent to the vector as 

shown in Figure 10.1a. The envelope of all characteristic flow 

surfaces is a curve locally tangent to U^. In two-dimensional 

rn^teady flow this curve is the particle path, while in three-

dimensional steady flow i t is the streamline. 

*-> • w CI V c a u. J. J-a 

The normal to a characteristic wave surface satisfies 

t h e  v a n i s h i n g  o f  t h e  s e c o n d  f a c t o r  i n  E q .  1 0 . 1 0 ,  i . e . ,  

A .  . N . N .  =  0  ( 1 0 . 1 2 )  
13 1 3 

where A^^ = A^^ are functions of the dependent variables 

u^ (v = l,2,...,n). Equation 10.12 is a quadratic equation of 

a cone with the normals directed along the cone generators 

(see Appendix G on quadric cone geometry). At a point in 

space there exist an infinite number of characteristic 
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PLANE OF NORMALS 

CHARACTERISTIC 
FLOW SURFACE 

ENVELOPE OF 
FLOW SURFACES 

a. Flow surface geometry 

BICHARACTERISTIC 

CONE OF NORMALS 

CHARACTERISTIC 
CONOID 

VCHARACTERISTIC 
"CONE 

CHARACTERISTIC WAVE 
SURFACE 

b. Wave surface geometry 

Figure 10.1. Characteristic surface geometry for flow 

problems in gas dynamics 
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surfaces corresponding to the infinite number of normals which 

satisfy Eq, 10=12. The envelope of these surfaces is called 

t. 
the characteristic conoid, shown in Figure 10.1b. The recip­

rocal cone to the cone of normals is called the character­

istic cone and is locally tangent to the characteristic conoid. 

The curves of contact between the characteristic wave surfaces 

and the characteristic conoid are called bicharacteristics. 

In three-dimensional steady supersonic flows,the characteristic 

cone is the right-circular Mach cone, while in two-dimensional 

unsteady flows the characteristic cone is the oblique-circular 

sonic cone. In both flow cases, the local tangent vector to 

the envelope of characteristic flow surfaces, U^, l ies along 

the axis of the characteristic cone. 

The equation of the characteristic cone, or equivalently, 

th e  e q u a t i o n  o f  t h e  r e c i p r o c a l  c o n e  t o  t h e  c o n e  o f  n o r m a l s  i s ,  

a c c o r d i n y  t o  E u .  1 6 . 3 2  

aT^ X X = 0 (10.13) 
1] 1 ] 

-1 
where A^^ are the elements of the inverse matrix to A^j. The 

vectors x^ satisfying Eq. 10.13, l ie along generators of the 

characteristic cone. This cone is locally tangent to a dif­

ferential element of the characteristic conoid whose equation 

is 

^ij ^^i ~ ® (10.14) 

in which the vectors dx^ are locally tangent to the 
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bicharacteristics. 

C. Compatibil ity Relations 

The compatibil ity relation, Eq. 10.6, is an interior 

operator on a characteristic surface; thus, the equation can 

be written in terms of derivatives in only two independent 

variables. Consider the transformation from coordinates to 

a new system x|, where = constant is a characteristic 

surface. Choose the components of such that 

9 x '  

5 ^ = N .  ( 1 0 . 1 5 )  

The original system of equations, Eq. 10.1, under this 

transformation becomes 

9u 

^I'lvi ÏÏîTT = b,, (y,v = 1,2,. .. ,n) (10.16) 

where 

= sp.j ̂  u0.17) 

If Eq. 10.16 is multiplied by the left eigenvector defined by 

"Prr in P 4-1-ion a orrn i xra 1 o-n -I- ri-F "Prr 1 A 4 e 

"y nr = vu (10.18) 

According to Eqs. 10.8 and 10.15 we have 
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3x ' 

\  %vi "i = "g R- = % ^;v3 = 0 

Thus, Eq. 10.18 becomes 

"y ^ ̂ % ̂;v2 ̂  = vp (10-2°) 

Equation 10.20 is the general form of the compatibil ity rela­

tion which must be satisfied by the dependent variables, u^, 

o n  a  c h a r a c t e r i s t i c  s u r f a c e  c o r r e s p o n d i n g  t o  e i g e n v e c t o r  w ^ .  

Equation 10.20 can be more simply expressed as 

3u 9u 

where the coefficients E^ and depend on the particular 

choice of the and x^ directions. 

d Interdependence of the Compatibil ity Relations 

The number of independent solutions for the left eigen­

vector w^ in Eq. 10.8 corresponding to a particular normal 

is determined by the rank of the coefficient matrix. If p is 

the rank of the matrix and n is the order of the system, then 

the number of l inearly independent solutions s for w^ is 

s  =  n  -  p  ( 1 0 . 2 2 )  
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Thus, there are s independent compatibil ity relations for each 

normal which, according to Eq. 10.6, have the form 

d . u ,  = dT ( j  =  1 , 2 , . . . , s )  ( 1 0 . 2 3 )  

Here 

where w^, ( j = l,2,...,s) are the linearly independent solu­

t i o n s  o f  E q .  1 0 . 8 .  

Since any compatibil ity relation is a linear combination 

of the n original equations, Eq. 10.1, the number of independent 

relations corresponding to one or several characteristic 

normals cannot exceed n. The dependency of the various 

compatibil ity relations can be determined by constructing the 

matrix w^ (j = l,2,...,n) whose rows are the left eigenvectors 

for each the relations considered. The rank of the matrix 

yields the number of independent relations and the rows of the 

highest order nonzero determinant show which relations are 

independent. 



www.manaraa.com

138 

XI. APPENDIX B: 

THE GENERAL NUMERICAL METHOD 

The general numerical method util izing the infinite 

family of bicharacteristics passing through a point and having 

second-order accuracy is presented in this section. The method 

was originally developed by Butler (17) and later extended by 

Ransom (14); the summary given below closely follows Ransom's 

work. 

Butler's scheme applies to problems in which the 

characteristic equation factors into a repeated linear factor 

and a symmetric quadratic factor (as presented in the general 

theory in Appendix A). Such problems are not restricted to 

those in gas dynamics; however, the discussion here is directed 

to problems in gas dynamics. 

A-. Parametric Representation of Bicharacteristics 

A differential element of the characteristic conoid, 

corresponding to the quadratic factor in the characteristic 

equation, is represented by the quadratic equation [Eq. 10.14] 

^ij '^^i ~ (11.1) 

where A^ j  = A^^. The differential vectors satisfying Eq. 11.1 

l ie along the bicharacteristics of the conoid. Butler (17) 

introduced the following parametric representation for the 
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infinite family of bicharacteristics passing through a point 

dx^ = (A^ + COS0 + sin0) di, (i = 1,2,3) (11.2) 

where 0 is a parameter corresponding to a particular bi-

characteristic and has the range 0 <_ 0 < 2tt. The reference 

vectors set y^, v^} of the parameterization must satisfy 

the equation of the differential conoid, Eq. 11.1. Substitu­

tion of Eq. 11.2 into Eq. 11.1 for dx^ yields the condition 

-1 2 2 
A .  .  ( À . À .  + y.y. cos 0 + v.v. sin 6 + 

1 ] 1 ] 1 j 

2A^yj COS0 + 2X^yj sin0 + 2y^Vj cos0 sin0) = 0 

(11.3) 

which is identically satisfied if y^ and are selected 

such that 

- A . 4  A . X .  =  A . ^  u - u .  =  A . ^  v . v .  ( 1 1 . 4 )  
x i  1 1  i l l " )  1 1  1  1  

and 

7\ 
" i j  ' i " i  " i j  " i ' j  " i j  " i ' i  

-1 -1 -1 
A . .  A > v . —  A . .  ( X l . « 5 )  

The condition expressed by Eq. 11.5 is that the reference 

vectors are mutual conjugate diameters of the cone (see 

Appendix G). Equation 11.4 is a "normalization condition" on 

the lengths of the reference vectors. 

Consider a transformation of coordinates from the 

coordinates x^ to a new system x^ with and as basis 
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vectors. The equations of this transformation can be expressed 

as 

dx^ = dx^ + dXg + dXg, ( i = 1,2,3) (11.6) 

where the endpoints of the basis vectors and are unit 

points on the coordinate axes x^^, x^ and Xg, respectively. The 

equation of the cone in the new basis, obtained by substitution 

of Eq. 11.6 into Eq. 11.1, is 

(11.7) 

+ 2A. ̂  A.. VI. dx, dx~ + 2A. ̂  X.v. dx,dx- + 2A. ̂  y.v. dx^dx, = 0 
IJ 1 J JL Z XJ 1 J X «5 XJ X 2 6 U 

This reduces to the canonical form 

(dx^)2 + â22 (dxg)^ + â~3 (dxg)^ = 0 (11.8) 

i f the basis vectors are mutually conjugate diameters of the 

cone [Eq. 11.51. The normalization condition expressed by 

Eq. 11.4 renders a particularly simple form of the transformed 

q u a d r i c  e q u a t i o n ,  i . e . ,  

- ( d x ^ j Z  +  ( d x ^ ) 2  +  ( d x ^ ) 2  =  0  ( 1 1 . 9 )  

which is the equation of a real cone completely enclosing the 

x^ axis. Thus the normalization condition also ensures that 

the vector l ies interior to the cone. There is a double 
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infinity of transformations which reduce the equation of the 

cone to canonical form corresponding to the double infinity of 

sets of mutual conjugate diameters of a cone (see Appendix G, 

S e c t i o n  E ) .  

B. Bicharacteristic Tangency Condition 

In Section E, one degree of freedom in the choice of the 

reference vectors and is removed by requiring to 

l ie along a particular direction interior to the differential 

conoid throughout the (x^, x^, x^) space. 

The remaining degree of freedom in the choice of orienta­

tion of and in the polar plane of is used to satisfy 

the requirement that the integrals 

0 
x .  -  x .  =  
1 1 

( X .  +  \i. cos6 + V. sin0) dx , ( i = 1,2,3) (11.10) 

0 

for constant value of 9 define a bicharacteristic. The vertex 

o f  t h e  c o n o i d ,  p o i n t  0  i n  F i g u r e  1 1 . 1 ,  h a s  c o o r d i n a t e s  x ^ .  

The vectors X^, and satisfy Eqs. 11.4 and 11.5 for the 

differential conoid throughout the space and, in general, are 

functions of the coordinates 6 and T on the conoid surface. 

Since the equation of the conoid, Eq. 11.10, can be expressed 

as = x^(0,t), the differential vector dx^ tangent to the 

conoid at any point is given by the equations 
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WAVE SURFACE ELEMENTS 

BICHARACTERISTIC 

CONOID 

"^DIFFERENTIAL CONOIDS 

Figure 11.1. Orientation of reference vectors and v. 

along a bicharacteristic of a characteristic 
conoid 
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3 x .  3 x .  

~ 3 0^ d8 + gy" (11.11) 

I 'he second term in Eq. 11.11 is obtained by differentiating 

E q .  1 1 . 1 0  w i t h  r e s p e c t  t o  % ,  i . e . ,  

9x. 
T—^ = X. + y. COS0 + V. sin0 (11.12) 
0  T  1 1  1  

which is a vector everywhere tangent to the hicharacteristic 

corresponding to 9. The differential conoid whose vertex is 

at a point P in Figure 11.1 touches the conoid along the hi­

characteristic. The equation of a surface element tangent to 

this differential conoid (Appendix G, Section C) along the 

direction cos0 + sin0 is 

(Xj + yj COS0 + Vj sin0) dx^ = 0 (11.13) 

This surface element is also tangent to the conoid surface at 

P .  T h e r e f o r e ,  E q ,  1 1 , 1 1  m u s t  s a t i s f y  E q .  1 1 . 1 3 ;  t h a t  i s ,  

-1 
A .  .  ( X  .  +  1 1  .  c o s 9  +  V. sin0) ^-5— d9 
1] ] ] ] oti 

-1 ^^i 
+ A^j  (X j + p j COS0 + Vj sin0) di = 0 (11.14) 

dx. 
If from Eq. 11.12 is substituted into this equation and the 

conditions on the reference vector set {X^, Eqs. 11,4 
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and 11.5, are employed, then the second term in Eq. 11.14 

vanishes identically. Hence, Eq. 11.14 becomes 

-1 ^^i 
A . . ( X. + y.  COS0 + V. sin0) = 0 (11.15) 
1J J J J 0 0 

This equation is sufficient to determine the orientation of 

the vectors and along the bicharacteristics relative to 

a fixed reference at the vertex of the conoid. 

C. General Form of the Wave Surface 

Compatibil ity Relation 

The general form of the compatibil ity relation, Eq. 10.21, 

can now be written for the characteristic wave surfaces in 

terms of the bicharacteristic parameter 0. The equation of a 

differential element of the wave surface, tangent to the 

characteristic conoid along the bicharacteristic l irection 

^i ^i COS0 + sin0 , is obtained from the equation of the 

conoid, Eq. 11.1, and has the form 

•^ij ^^i ^i cosG + sin0) dx^ = 0 (11.16) 

where the differential vector dx^ l ies in the wave surface. 

From this result, the wave surface normal, can be expressed 

as 

=  A ^ j  ( A j  +  y j  C O S 0  +  V j  s i n 0 )  ( i  =  1 , 2 , 3 )  ( 1 1 . 1 7 )  
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The bicharacteristic direction lies in the wave surface 

and is chosen as one of the two directions of differentiation 

in the general form of the compatibil ity relation, Eq. 10.21. 

The second direction, 

Mi = cos9 - sin0 (11.18) 

is picked to yield a particular form for the compatibil ity 

relation. The orthogonality of and the wave surface normal 

can be verified by taking their scalar product and using 

Eqs. 11.4 and 11.5. 

The general form of the wave surface compatibil ity rela­

tion is now written in terms of the bicharacteristic and 

directions as 

au 
\  ( ^ i  +  c o s e  +  s i n e )  

=  B  +  ( v ^  c o s e  -  s i n e )  ( 1 1 . 1 9 )  

where the coefficient A^, B, and are functions of 6, 

and u,. 
V 

The dependence of the coefficients B, and on e in 

Eq. 11.19 is determined by considering the wave surface 

compatibil ity relations for the case n = 3 (i.e., a system of 

three equations in three dependent variables, u^). Equation 
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11.19, written for 0 = 0, ïï/ 2 ,  tt, and yields 

9u 8u 
A ^ ( 0 )  ( X ^  +  ^  =  B ( 0 )  +  C ^ { 0 ) v ^  ^  ( 1 1 . 2 0 )  

i  i  

3u 3u 
A^(tt/ 2 )  ( X .  +  v. )  ^  =  B ( T T / 2 )  -  C ^ (tt/2) ^ (11.21) 

i  i  

a\, - wi) = b(0 - \k (11.22) 
1 1 

\  ( ^ i  -  3 ^ ^  -  B  ( ^ )  +  ( ^ )  V i  3 ^  ( 1 1 . 2 3 )  

1 1 

Each of these four equations can be considered as l inear 

combinations of the original three equations. Therefore, 

Eqs. 11.20 - 11.23 are not l inearly independent, and there 

exists a l inear combination of these equations which yields an 

identity. Assume that a, B, y, 5 are scalar multipliers of 

Eqs. 11.20-11.23, respectively, in the linear combination. 

Since the vectors X, y^, and are independent, the 

9u^ 3u^ 3u^ 
coefficients of the derivatives X. y. , and v. 3— in 

i v%' 1. dx- xoxr 
1 l 1 

the linear combination must vanish. This yields the relations 

a  A y ( 0 )  +  B  A ^ ( ^ )  +  Y  A y t n )  + 5  ( ^ )  =  0  ( 1 1 . 2 4 )  
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a  A^(0) + g  C^ ( T r/2) -  y  A^(tt) - 6 (F^) = 0 ( 1 1 . 2 5 )  

-  a  C ^ ( 0 )  +  B  A^(tt/ 2 )  +  y - 6 (|^) = 0 (11.26) 

a ECO) + B B(tt/2) + Y B(ÏÏ) + 6 B(^) = 0 (11.27) 

Also, any three of the equations, Eqs. 11.20 through 11.23, 

are equivalent to the original system of differential equations 

and therefore must have the same characteristic surfaces. This 

condition yields the additional relation 

Equations 11.24-11.28 are not only conditions on the numbers 

a, B; y, and 6 but also (as to be shown later) on the 

dependence of A^, B, and on the parameter 0. 

The 9-dependence of the coefficients A^, B, and is 

obtained by multiplying Eqs. 11.20-11.23 by the factors 

a ( l  +  2  C O S 0 )  ,  B  ( - 1 - 2  s i n 0 )  ,  y  { 1  -  2  cos0) , and 6 (-1 + 2 sin0), 

respectively, and summing. This particular combination has 

the property that the correct 0-dependence of the directional 

Stt 
derivatives results, and for 0 = 0, Tr/2, ir, and Y-, Eqs. 11.20-

11.23 are reproduced. 

a CY(0) + B C^(tt/2) + y C^(tt) +6 (^) = 0 (11.28) 
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After considerable rearrangement of terms in the summation 

e q u a t i o n  j u s t  d e s c r i b e d  a n d  u s e  o f  E q s .  1 1 . 2 4  t h r o u g h  1 1 . 2 8 ,  

the general form of the wave surface compatibil ity relation, 

Eq. 11.9, is obtained in which the coefficients have the 

following form 

A^ = A^^ + Ag^ cose + Ag^ sine (11.29) 

B = + Bg cosB + Bg sine (11.30) 

cose + sine (11.31) 

in which 

^iv = a \  - 6 A^(TT/2) + Y A^(TT) - 5 A^(^) (11.32) 

A .  ,  =  2 l a  A  ( 0 )  -  Y  A  (tt) ]  ( 1 1 . 3 3 )  

A g ^  =  - 2 [ B  A^(tt/ 2 )  -  6  A ^ ( J i ) ]  ( 1 1 . 3 4 )  

=  2  [ a  C ^ ( 0 )  +  Y  C ^ ( T r ) ]  ( 1 1 . 3 5 )  

czv = -*3% 

^3v " ̂2v 

(11.36) 

(11.37 
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=  a  B ( 0 )  -  B  B(7r/2) + y B(tt) - 6 B(|2^) ' (11.38) 

B ^  =  2[a B ( 0 )  -  Y  B(tt)] ( 1 1 . 3 9 )  

B 3  =  - 2 [ B  B ( t t / 2 )  -  5  B ( | ^ ) ]  ( 1 1 . 4 0  

The dependence of the coefficients B, and on 0 is shown 

explicitly in Eqs. 11.29-11.31. 

The General Form of the 

Noncharacteristic Relation 

In the general numerical method, a noncharacteristic 

relation formed by taking a particular linear combination of 

the original differential equations is employed. This equation 

is obtained by multiplying Eqs. 11.20-11.23 by a, -6, y, and 

-6, respectively, and summing. After rearrangement and use of 

Eqs. 11.25 and 11.26, the equation 

9u 9u 9u 

1  1 1  

is obtained, where the coefficients B^, and are 

given in the preceding section. This equation is used in the 

elimination of cross derivatives of the dependent variables u^ 

at the solution point in the numerical scheme. 
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E. The Second-Order Numerical Scheme 

In the numerical solution scheme, an inverse network is 

used in which the solution point with coordinates is 

fixed, and the bicharacteristics through the solution point 

are projected back into the noncharacteristic initial data 

surface, f(x^) =0. It is assumed that the base points at the 

intersection of the bicharacteristics and the initial data 

s u r f a c e  c a n  b e  l o c a t e d  t o  s e c o n d - o r d e r  a c c u r a c y  u s i n g  E q .  1 1 . 2 ,  

and that second-order accurate estimates of the dependent 

variables u^ can be obtained at these points. Equations 11.19 

and 11.41 are then used to determine u^ correct to second-

o r d e r  a c c u r a c y  a t  t h e  s o l u t i o n  p o i n t  a ^ .  

Equations 11.19 and 11.41 can be written in operator 

notation as 

where L denotes the bicharacteristic direction, L^, and X the 

direction. Bicharacteristics through meet the initial 

data surface f(xx) = 0 at T = -T(6). Thus Eq. 11.42 written 

in finite-difference form along the bicharacteristics, using 

t h e  m o d i f i e d  E u l e r  s c h e m e  ( r e f .  6 1 ) ,  i s  

=  [ B  +  C y ( v ^  c o s 9  -  s i n 0 )  ]  d t  

i  

( 1 1 , 4 2 )  

and 

( 1 1 . 4 3 )  
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Â ^ [ U ^ { A )  -  u ^ ( f ) 3  =  { B  +  % [ S ( A )  +  S { f ) ] }  T O )  +  O ( T ^ )  ( 1 1 . 4 4 )  

where 

9% 
5 = cos9 - sine) (11.45) 

\  +  A ^ ( f ) ]  ( 1 1 . 4 6 )  

B  =  % [ B ( a )  +  B ( f ) ]  ( 1 1 . 4 7 )  

The notations (et) and u^(f) are used to denote the dependent 

variables at the solution point and at the base points on 

the surface f(x^) = 0, respectively. The quantities u^(a) and 

2 
u ^ ( f )  i n  E q .  1 1 . 4 4  h a v e  b e e n  a s s u m e d  c o r r e c t  t o  o r d e r  T  , and 

B, S (a), and S(f) to order T. The quantities need only be 

c o r r e c t  t o  z e r o t h  o r d e r  i n  T .  

The direction of is now chosen such that = 0 

throughout the (x^, ; x^) space= (This condition is 

satisfied in two-dimensional unsteady, and three-dimensional 

steady supersonic flows in gas dynamics with directed along 

the axis of the characteristic cone.) The vanishing of this 

coefficient is required to eliminate the cross derivative 

terms at the solution point in the numerical scheme. In 

Eq. 11.44, S (a) is then given by 

S (a) = (C, cose + C, sine)(v. cose - y. sin0) -— (11.48) 
6 V j V X  1 0 ̂  
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3u^ 9u^ 
where C_ ,  C, , v. •5——, and y. -r— are evaluated at x. = a.. 

6 v -3 v 1 o x d x x x 

In order to maintain second-order accuracy in the 

9u^ 9u 
numerical scheme, the cross derivatives, v. -r— and y. 3—^, 

x o x < x d x • 
1 1 

appearing in Eq. 11.48 must be evaluated or eliminated. In 

any explicit scheme these terms cannot be evaluated until after 

the entire solution surface is solved. Butler (17) eliminated 

these terms by using weighted integration of the infinite 

number of wave surface compatibil ity relations which exist at 

a point. 

Consider Eq. 11.44 weighted first by the factor 

f(a) cos0/t(6), and then by f(a) sin6/t(0); these resultant 

equations integrated with respect to 0 between limits 0 and 2tt 

give 

f  ( a )  A  c o s B  f ( a )  u , , ( f )  Â , ,  c o s  
^ de = 

1 ( 0 )  

0 0 
t(e) 

+ % f ( a ) S { f )  c o s G  d0 + f ( a ) B  COS0 de +  0 ( f  ( a ) )  ( 1 1 . 4 9 )  

and 
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2ïï 

u^(a) 
f(a) sine 

ttêl 

2ïï 

de = 
f ( a ) u ^ ( f )  s i n e  

de 

2-rr 2n 

+ % f ( a ) S ( f )  sine de + f(a)B sine d6 + 0(f'(a)) (11.50) 

where f(a) is the evaluation of the function f(x\) at the point 

*i " ̂'i* 

A third condition on u^(a) is obtained by considering the 

noncharacteristic relation, Eq. 11.43, written along the 

curve dx^ = X^di inside the characteristic conoid. Suppose 

that the curve dx^ = X^dT through x^^ = meets the initial 

data surface at x = -h. Let the value of u^ at this point be 

denoted by u^(h). Then, using the modified Euler scheme, the 

di f ference form of Ea. 11.43 is 

A i ^ [ u ^ ( a )  -  u ^ ( h ) ] =  h  s; + % 
Su „ 

^2v^i 3x. ^3v 
- C. 

"•^i-'x. = a. 

I --Y 

T = -h 
+ o(hr) 

(11.51) 

where 

hv - %lalvca] + aiv(h)] (11.52) 
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= ^[B^(a) + B^(h)] ( 1 1 . 5 3 )  

Equation 11.44 is weighted by the factor h/x, and integrated 

with respect to 0 from 0 to 2tt. Then Eq. 11.51, multiplied by 

ir, is subtracted from the integral of Eq. 11.44 to yield 

2ïï 

118) 46 - n aiv 

-0 

2tt 
h u ^ ( f )  

"tW 
d9 -

2ïï 

+  h S ( f )  d 6  

0 

IT h 

2 

3u 9 u^^ 

c^v^i 3x7 " ̂ 3v^i 3x7 
1 1 T = -h 

2tt 

+ hi d0 - ïïhB* + O(h^) ( 1 1 . 5 4 )  

Note that Eqs. 11.49, 11.50 and 11.54 do not depend on the 

derivatives of the dependent variables at the solution point; 

hence, they provide a basis for an iterative scheme which 

d e t e r m i n e s  u ^ ( a )  c o r r e c t  t o  0  ( h " ) .  E q u a t i o n s  1 1 . 4 9 ,  1 1 . 5 0 ,  

and 11.54 are the necessary three independent equations for 

the dependent variables, u (a), when n = 3. If n > 3. i t is 

assumed that the additional n - 3 conditions needed to form a 

complete system of equations can be obtained from the 

compatibil ity relations written on flow surfaces. 
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In practice, the integrals with respect to 0 in Eqs. 

1 1 . 4 9 ,  1 1 . 5 0 ,  a n d  1 1 . 5 4  a r e  r e p l a c e d  b y  s u m s  o v e r  t h e  f o u r  

3tt 
/alues 6 = 0, ÏÏ/ 2 ,  ÏÏ, and Initial values of u^, 

i  
9u^ 

and on the surface f(x^) = 0 at the intersections of 

" i  

the four bicharacteristics and the curve dx^ = À^di are 

determined by intepolation among sets of known points on the 

surface. If i t is sufficient to obtain a solution correct to 

9u 3u 
0 ( h ) ,  t h e  t e r m s  c o n t a i n i n g  y .  a n d  v .  3 — ^  i n  E q s .  1 1 . 4 9 ,  

X d X • X 0 X > 
1 1 

1 1 . 5 0 ,  a n d  1 1 . 5 4  c a n  b e  n e g l e c t e d  s i n c e  t h e s e  t e r m s  a r e  o f  

2 
order h in the finite-difference form of the compatibil ity 

r e l a t i o n ,  E q .  1 1 . 4 4 .  
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X I I .  A P P E N D I X  C :  

FINITE-DIFFERENCE FORM OF THE 

BICHARACTERISTIC TANGENCY CONDITION 

In order to maintain second-order accuracy in the 

numerical solution scheme (Chapter III), the bicharacteristic 

t a n g e n c y  c o n d i t i o n  E q .  3 . 9  

9x. 
( a . c o s 0  +  B . s i n B )  = 0  ( i  =  1 , 2 )  '  ( 1 2 . 1 )  
1 1 do 

must be satisfied to second-order accuracy. The f inite-

difference approximation of Eq. 12.1, developed in this section, 

y i e l d s  c o n d i t i o n s  o n  t h e  r e f e r e n c e  v e c t o r s  ( k ) ,  3 ^ ( k )  

(k = 1,2,3,4) at the intersections of the four bicharacteristics 

corresponding to 0 = 0, tt/2, tt , 3it/2 and the initial data 

written in terms of a fixed reference for a^(6) and B^(6) at 

t h e  s o l u t i o n  p o i n t  ( 6 ) .  

9 x .  

The difference approximation for the derivative in 

Eq. 12.1 is found by f irst integrating the bicharacteristic 

e q u a t i o n ,  E q .  3 . 3 ,  i . e . .  

X. (0,t) - (6) = (u^ + a COS0 + a sinB g^^dt 

( i  =  1 , 2 )  (12.2) 
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where t = 0 corresponds to the solution point (6) at the 

2 
vertex of the conoid. The integral above, correct to 0(t ), 

i s  d e t e r m i n e d  u s i n g  t h e  p o w e r  s e r i e s  e x p a n s i o n s  f o r  u ^ ,  3 ^  

a n d  a  a b o u t  t h e  s o l u t i o n  p o i n t  ( 6 ) ,  

=  u ^ { 6 )  +  u u ( 8 ) t  +  O ( t ^ )  ( 1 2 . 3 )  

t t i  =  a ^ ( 6 )  +  a ^ ( 0 ) t  +  O ( t ^ )  ( 1 2 . 4 )  

3 ^  =  B .  ( 6 )  +  9 ^ ( 8 ) t  +  0  ( t ^ )  ( 1 2 . 5 )  

a  =  a ( 6 )  +  a ( 9 ) t  +  O ( t ^ )  ( 1 2 . 6 )  

where numbers in parentheses indicate evaluations of functions 

at corresponding network points. Also, the simplified notation 

3 u .  

*i(g) = , etc. is used for the coefficient of the first-
t=0 

order terms of the expansions. If Eqs. 12.3-12.6 are sub­

stituted into Eq. 12.2 and the resulting equation integrated, 

we get 

x ^ ( 0 , t )  -  x ^ ( 6 )  =  { u u ( 6 )  +  a  ( 6 )  [ a ^ ( 6 )  c o s 0  +  g ^ ^ 6 )  s i n 0 ] }  t  

+ Î  { u ^ f o )  t a(6) [ a ^ ( 6 )  c o s 6  f  p U ( 6 )  s i n S j  

+ a(6) [a^(0) COS0 + 3^(8) sin0]} t^ 

+  O ( t ^ )  ( 1 2 . 7 )  
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dX. 
An approximate expression for the derivative obtained by 

differentiating Eq. 12.7 with respect to 0 is 

'dx. 
jgi = a(6) [6^(6) COS0 - a^(6) sin0] t 

+ ̂  {uV(0) + a" (0) [a^(6) cos6 + 3j_(6) sin0] 

+ a(0) [6^(6) COS0 - a^(6) sin0] 

+ a(6) [B^(0) COS0 - a^(0) sin0 

+  g ^ y ( 0 )  s i n 0  +  a ^ " ( 0 )  c o s 0 ] }  t ^  

+  O ( t ^ )  ( 1 2 . 8 )  

where the primes denote differentiation with respect to 0. 

To complete the numerical approximation of the bicharacter-

istic tangency condition, the power series expansions for 

and Eqs. 12.4 and 12.5, and the approximation for 

dX. 
Eq. 12.8, are substituted into Eq. 12.1. In the resulting 

equation, products are expanded and terms are collected in 

powers of t. These terms must vanish for all values of t; 

therefore, the coefficients of powers of t must vanish 

individually. In maintaining second-order accuracy only the 

3 
coefficients of terms up to 0(t ) need be investigated. No 

9 x .  

zeroth-order terms result since the expression for -g-g— is 

homogeneous in t. 
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The coefficient of the first-order term in t, equated to 

zero, yields 

a ( 6 ) [ a ^ ( 6 )  c o s 9  +  3 ^ ( 6 )  s i n 8 ] [ g ^ ( 6 )  c o s 6  -  a ^ ( 6 )  s i n 9 ] = 0  ( 1 2 . 9 )  

Substitution of the orthonormal properties 

a^g. = 0 (12.10) 

°'i°' i ~ ^ (12.11) 

= 1 (12.12) 

evaluated at (6) i n t o the expanded form of Eg. 12.9 yields an 

equation which is identically satisfied. Hence, no condition 

on the reference vector variation along a bicharacteristic is 

necessary to maintain a first-order approximation of the 

tangency condition. 

The coefficient of the second-order term in t, equated to 

zero, yields 

a ( 6 )  [ a ^ ( 6 )  c o s 6  +  6 ^ ( 6 )  s i n 0 ] f 6 ^ ( 6 )  c o s 0  -  a.{&) sin0] 

+  % [ a ^ ( 6 )  C O S 0  +  3 ^ ( 6 )  s i n 0 ]  

X { u | ( 0 )  +  a '  ( 8 )  [ a ^ ( 6 )  c o s 0  +  3 j ^ ( 6 )  s i n 0 ]  

+  a ( 0 )  [ 3 ^ ( 5 )  C O S 0  -  ( o )  s i n 0 ]  

+  a ( 6 )  [ 0 ^ ( 9 )  C O S 0  -  a ^ ( 9 )  s i n 9  

+  3 | ( e )  s i n 9  +  a ' ( 9 )  c o s 9 ] }  =  0  ( 1 2 . 1 3 )  
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Expansion of Eq. 12.13 and util ization of the orthonormal 

p r o p e r t i e s  o f  t h e  r e f e r e n c e  v e c t o r s ,  E q s .  1 2 . 1 0  t h r o u g h  1 2 . 1 2 ,  

yields 

a ( 6 )  [ a ^ ( 0 )  C O S 0  +  s i n 9 ] [ B ^ ( 6 )  c o s 6  -  a ^ ( 6 )  s i n 0 ]  

+  \  { u | ( 0 )  [ a ^ ( 6 )  C O S 0  +  3 ^ ( 6 )  s i n 0 ]  +  a ' ( 0 )  

+  a ( 6 )  [ a ^ { 6 )  c o s 0  +  B ^ ( 6 )  s i n 0 ]  

X  t 3 ^ ( 0 )  c o s 9  -  0 ^ ( 6 )  s i n 0  

+  B [ ( 0 )  s i n 9  +  a | ( 0 )  c o s 0 ] }  =  0  ( 1 2 . 1 4 )  

The power series expansions for and Eqs. 12.4 and 

12.5 ,  a n d  t h e  o r t h o n o r m a l  p r o p e r t i e s ,  E q s .  1 2 . 1 0  a n d  1 2 . 1 2 ,  

yield approximate conditions which can be used to further 

simplify Eq. 12.14. Consider the scalar product In 

terms of Eq. 12.4, we can write 

0 i ; 0 t ^  =  ( 6 )  ( 6 )  +  2  ( 6 )  ( 0 )  t  +  O ( t ^ )  ( 1 2 . 1 , 5 )  

o r ,  w i t h  s u b s t i t u t i o n  o f  E q .  1 2 . 1 1  

1  =  1  +  2  a ^ ( 6 )  a ^ ( 0 )  t  +  O ( t ^ )  ( 1 2 . 1 6 )  

From this result we get a zeroth-order approximation for the 

p r o d u c t  a ^ ( 6 )  a ^ ( 0 ) ,  i . e . ,  

a ^ ( 6 )  a ^ ( e )  =  0  +  0 ( t )  ( 1 2 . 1 7 )  
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This relation need only be correct to zeroth-order in Eq. 

2 
1 2 . 1 4  s i n c e  E q .  1 2 . 1 4  i s  t h e  c o e f f i c i e n t  o f  t  i n  t h e  s e r i e s  

approximation to Eq. 12.1. Similarly, we can write 

and 

6 ^ ( 6 )  6 ^ ( 0 )  =  0  +  0 ( t )  ( 1 2 . 1 8 )  

a ^ ( 6 )  3. (0) =  -  3 ^ ( 6 )  a. (0) +  0  ( t )  ( 1 2 . 1 9 )  

The derivatives of Eqs. 12.17 through 12.19 with respect to 9 

are 

0 ^ ( 6 )  a j ( 0 )  =  0  +  0 ( t )  ( 1 2 . 2 0 )  

0 ^ ( 6 )  6 ^ ( 9 )  =  0  +  0 ( t )  ( 1 2 . 2 1 )  

a ^ ( 6 )  3 [ ( 0 )  =  -  B ^ ( 6 )  0 / ( 9 )  +  0  ( t )  ( 1 2 . 2 2 )  

Expansion of Eq. 12.14 and substitution of 12=17-12.22 yields 

a ( 5 )  B^(5) a^(0) 

+ [ o ^ ( 6 )  COS0 +  3 ^ ( 6 )  s i n 0 ]  u | ( 0 )  +  a ' ( 0 )  =  0  ( 1 2 , 2 3 )  

In order to evaluate the derivatives u! (0) and a' (9) in Eq. 

12.23 we again employ the power series expansions. The 

derivatives of Eqs. 12.3 and 12.6 with respect to 9 are 

9 u .  

*1(0) - 90^ +  0 ( t )  ( 1 2 . 2 4 )  
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a'(g) = I# f +  0 ( t )  ( 1 2 . 2 5 )  

The derivatives with respect to 6 in Eqs. 12.24 and 12.25 can 

be expressed in terms of spatial derivatives by the chain rule 

as 

3 u .  3 u .  3 x .  
1 _ 1 

36 3xj 90 

9a 9a 

9 6 9x . 91 
] 

(12.26) 

( 1 2 . 2 7 )  

According to Eq. 12.8 we can write 

2 
=  a ( 6 )  [ B ^ ( 6 )  c o s 6  -  a ^ ( 6 )  s i n 0 ]  t  +  0  ( t  )  

(12.28) 

Substitution of Eqs. 12.26-12.28 in Eqs. 12.24 and 12.25 yields 

su 
u l  ( 0 )  =  a ( 6 )  [ 6 . ( 6 )  G o s 6  -  a .  ( 6 )  s i n 6 ]  ^  +  0 ( t )  ( 1 2 . 2 9 )  
± J J oXj 

a '  ( 6 )  =  a ( 6 )  [ 3 . ( 6 )  c o s e  -  a . ( 6 )  s i n 0 ]  +  0 ( t )  ( 1 2 . 3 0 )  
j 3 ox j 

Since the expressions for u|(e) and a'(0) need only be correct 

g  
to zeroth-order in t in Eq. 12.23, the derivatives %— and 3— 

oxj^ 3 

in Eqs. 12.29 and 12.30 are evaluated at the solution point on 

drie initial data surface without affecting the order of the 



www.manaraa.com

1 6 3  

approximation. Substitution into Eq. 12.23 for u'(6) and a'(0) 

from Eqs. 12.29 and 12.30 gives 

B^(6) a^(0) + [a^(6) cosB + 3j_(6) sinB] 

9u. 
X [g. (6) cos9 - a. (6) sin0] 

J ] 

+ [3.(6) COS0 - a.(6) sin0] = 0 (12.31) 
J  J  J  

The scalar product of the power series expansion for a^, 

Eq. 12.4, and the vector B^(6) yields 

3^(6) a. = B^(6) a_(6) + B^(6) a^(0) t (12.32) 

where the higher order terms have been dropped. According to 

Eq. 12.10 the first term of this equation is zero. Hence, we 

can rewrite Eq. 12.31 as 

B ^ ( 6 )  =  - D ( 0 )  t  ( 1 2 . 3 3 )  

wnere 

D (0) = [ a ^(6) COS0 + B ^ ( 6 )  sin0] 

9 u. 
X [6.(6) COS0 - a.(6) sin0] 

] J 

+ [6.(6) COS0 - a. (6) sin0] (12,34) 
J ] "X j 
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Equation 12.33 is one equation for the two components of a^. 

The other relation needed is Eq. 12.11. Elimination of from 

Eqs. 12.33 and 12.11 yields a quadratic equation in ot^. The 

correct solution for is 

=  - D ( 0 )  6 ^ ( 6 )  t  +  a ^ ( 6 )  [ 1  -  D ^ ( 0 )  t ^ ] ^  ( 1 2 . 3 5 )  

This equation can be verified by letting t go to zero since 

at the base point must approach (6) in the limit. The other 

c o m p o n e n t ,  0 - 2 1  i s  f o u n d  b y  e l i m i n a t i n g  b e t w e e n  E q s .  1 2 . 3 3  

and 12.35, with the result 

« 2  =  - D ( 8 )  6 2 ( 6 )  t  +  « 2 ( 6 )  [ 1  -  o f  ( 6 )  t 2 ] %  ( 1 2 . 3 6 )  

After the components a^ ( k )  ( k  =  1 , 2 , 3 , 4 )  a r e  e s t a b l i s h e d  a t  

the bicharacteristic base points, the components 3^(k) are 

determined using the crthcncrrr.sl properties Eqs. 12.10 and 

12.12. 



www.manaraa.com

165 

XIII. APPENDIX D: 

NUMERICAL STABILITY ANALYSIS 

Stability of the numerical scheme for solution of a 

system of differential equations is a property of the differ­

ence equations which are used as approximations of the 

differential equations. There does not appear to exist a 

universal definition for stability, but the most common con­

cept is that of stepwise stability which refers to the bounded-

ness of the numerical solution as t ->• <» for fixed time incre­

ment, At. Many criteria exist for testing stability, and a 

good discussion of the methods is given by Roache (68). All 

stability criteria which presently exist were developed for 

linear difference equations. For the case of nonlinear 

equations, the approach taken is to linearize the difference 

equations and to apply the same criteria locally. 

In this section the Courant-Friedrichs»-Lewy (CFL) ^nd 

von Neumann stability criteria are applied to the interior 

point numerical algorithm developed in Chapter III. The CFL 

criterion is a necessary condition for stability and states 

that the differential domain of dependence must l ie within the 

convex hull of the difference scheme. This condition sets an 

upper limit on the time increment which can be taken in the 

interior point algorithm. The von Neumann criterion states 

that a difference scheme is stable only if there is a limit to 

the extent that every Fourier component of the initial data is 
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amplified by application of the difference scheme. In 

application of the von Neumann criterion to the numerical 

method, all aspects of the scheme including interpolations for 

i n i t i a l  d a t a  m u s t  b e  c o n s i d e r e d .  H o w e v e r ,  t o  s h o w  t h e  e f f e c t  

of interpolations on the stability characteristics of the 

scheme, the difference scheme was first analyzed in two parts; 

(1) the basic scheme (without interpolation and using exact 

data at base points), and (2) the initial data interpolation 

scheme alone. The basic scheme was determined to be unstable 

for all time increments while the interpolation scheme was 

found to be stable. Finally the difference scheme (with 

interpolations for initial data) was analyzed and found to be 

stable when the CFL criterion was satisfied. These results 

show the stabilizing influence that interpolations have on the 

scheme. 

A. Courant-Friedrichs-Lewy Stability Criterion 

The Courant-Friedrichs-Lewy (CFL) stability criterion 

(ref. 16) states that the domain of dependence of the differ­

ence equations, defined as the convex hull of the points in 

the initial data surface used in the difference scheme, must 

contain the domain of dependence of the system of differential 

equations. The convex hull of the difference scheme, shown in 

Figure 13.1, is the boundary of the union of lines joining all 

pairs of the nine mesh points used for interpolation in the 
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convex hull of 
difference scheme 

a. (6), 
' f V / -q p. 

Dlrf-ERENTlAL DOMAIN 

OF DEPENDENCE _ INITIAL DATA 
SURFACE 

a. View showing bicharacteristics, particle path, and 

convex hull of difference scheme 

convex hull of 
xg /difference scheme 

/i 

^min 

W (6}  

o-

b. Projection onto initial data surface showing differential 

domain of dependence and convex hull of difference scheme 

Figure 13.1. Pentahedral bicharacteristic line network for 

two-dimensional unsteady flow 



www.manaraa.com

168 

initial data surface. Tb-^ differential domain of dependence 

ir. for thA case of steady, uniform flow, a region bounded by 

a circle of radius aAt concentric about the intersection of the 

particle path and the initial data surface, point (5) in 

F i g u r e  1 3 . 1 .  

The CFL criterion will always be satisfied if the maximum 

distance frora the solution point, point (6) , to a point on the 

b o u n d a r y  o f  t h e  d i f f e r e n t i a l  d o m a i n  o f  d e p e n d e n c e ,  ( j u ^ j + a )  A t ,  

is made less than or equal to the minimum distance to the 

convex hull, r^^^ in Figure 13.1. Expressed in terms of the 

Courant number, C, 

(|u.l+a) At 
c = i  , (13.1) 

min 

the condition is 

C  £  1 . 0  ( 1 3 . / )  

This is a condition on the maximum time step which can be 

taken in the numerical integration and must be satisfied at 

all mesh points. 

The above analysis was based on steady, uniform flow 

t h roughout the region of interest. In the general case, the 

differential domain of dependence is noncircular due to 

property variations. Hence, a better estimate of the maximum 

time step is given by the relation 
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%ax ' 

w h e r e  ( | u u | + a ) ^ ^ ^  i s  t h e  m a x i m u m  v a l u e  o f  t h a t  q u a n t i t y  

evaluated at all mesh points of the nine-point cell. After 

s o l u t i o n  f o r  t h e  d e p e n d e n t  v a r i a b l e s  a t  p o i n t  ( 6 ) ,  E q .  1 3 , 3  

is again checked using the data at the solution point. Note 

that the maximum time step permitted by Eq. 13.3 is a con­

servative estimate since no accounting is made of the location 

of the differential domain of dependence within the convex hull 

( w h i c h  d e p e n d s  o n  t h e  f l o w  a n g l e  9 ) .  

The CFL stability criterion is a necessary condition for 

stability. Hahn (69) has determined that the CFL criterion is 

also a sufficient stability condition for simplicial networks. 

Networks are termed simplicial if L + 1 bicharacteristic base 

points arc used on an initial data surface of uimeiisiuii L. 

For problems in three independent variables, simplicial net­

works involve three bicharacteristic base points. Thus, the 

field point network, involving four bicharacteristic base 

points, is nonsimplicial, and the CFL criterion is not a 

sufficient condition for stability. Difference schemes based 

on nonsimplicial networks must satisfy other criteria to 

ensure stability. 
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B. von Neumann Stability Criterion 

The vor. Neumann condition (ref. 15) states that a dif­

ference scheme is stable only if there is a limit to the extent 

that every Fourier component of the initial data is amplified 

by application of the difference scheme. This condition 

requires that the spectral radii, p (A), of the amplification 

matrix A of the difference equations satisfy the inequality 

p ( A )  <  1  +  0 ( A t )  ( 1 3 . 4 )  

for all possible combinations of the Fourier components 

occurring in a Fourier series solution of the difference 

e q u a t i o n s  ( r e f .  2 9 ) .  

Lax and Richtmyer (70) have shown the von Neumann condi­

tion to be a sufficient condition for the stability of linear 

difference equations only. However,- the von Neumann condition 

has appeared to be sufficient for all nonlinear as well as 

linear schemes which are known to have been investigated 

( r e f .  2 9 ) .  

1. Linear difference equations 

In order to apply the von Neumann condition the differ­

ential characteristic relations must be linearized. The 

system of differential equations for unsteady flow consists of 

the wave surface compatibility relation, Eq. 3.11, applied 

along the four bicharacteristics, the noncharacteristic 
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relation, Eq. 3.22, written along the particle path, and the 

particle path compatibility relation, Eq. 2.32. However, the 

particle path compatibility relation is coupled to the remain­

ing equations only through the coefficients, and therefore not 

needed in the linear analysis. The remaining five equations, 

written in terms of the directional differential operators, are 

2 -
d  p  +  p a  a . d  u .  +  p a  B . g .  d t  =  0  ( 1 3 . 5 )  
ii^ j ] j a dx^ 

2 • 
d  p  +  p a  B . d  u .  +  p a  a.a .  d t  =  0  ( 1 3 . 6 )  
•^2 j 2 ] ^ 

2 
d  p  -  p a  a . d  u .  +  p a  B . g .  d t  = 0  ( 1 3 . 7 )  
l i o  J  ]  3 1  dX^  

2 
d p - p a g .d u. + p a a.a. dt = 0 

J - 'A J J 
( 1 3 . 8 )  

y 3u . 
d  p  +  p a  (a.a. + 3-3.) ^  d t  =  0  ( 1 3 . 9 )  

U J X. J 1 CJ 

where the subscripts (i = 1,2,3,4) and U denote the four 

bicharacteristics and particle path, respectively. Elimina-

3u. 
tion of the terms involving the derivatives a.a. ^ and 

] 1 ox. 
3 u .  

g . g .  f r o m  E q s .  1 3 . 5 - 1 3 . 9  y i e l d s  t h e  f o l l o w i n g  s y s t e m  o f  
j ^ x 

three independent equations: 
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1  p  -  d  p  +  p  a  a .  ( d  u .  +  d  u . )  = 0  ( 1 3 . 1 0 )  
i13 ] ] ^3 3 

d p - d p + p a 6 . (d u. + d u. ) = 0 (13.11^ 

+ p a  [ a . ( d .  u .  -  d  u . )  +  3 • ( d  u .  -  d  u . ) ]  =  0  ( 1 3 . 1 2 )  
] ] ^3 ] ] ^2 ] 4 ^ 

In the linearization process, the dependent variables are 

assumed to be represented by 

u  =  u  +  Ù  ( 1 3 . 1 3 )  

where u represents any variable, u the mean value (a constant) 

and Ù a small perturbation (u<<u). Substitution for the 

dependent variables in terras of Eq. 13.13 into Eqs. 13.10-

13.12 gives 

d  p  -  d  p  +  p  a  ( d  Û .  +  d  ù . )  =  0  ( 1 3 . 1 4 )  
"1 ^3 J 3 J-3 D 

d  p  -  d  p  +  p  a  3 . ( d  Ù .  +  d  ù . )  =  0  ( 1 3 . 1 5 )  
^2 4 ] ] 

d;, p + d̂  p + p + d̂  p - 2 dyp 

+ p a [ a - ( d  Ù .  -  d  u . )  +  g . ( d  u .  -  d  Q .  )  ]  = 0  ( 1 3 . 1 6 )  
3 D ] 

where higher order terms have been neglected. Next, using the 
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modified Euler scheme, we replace the differentials in Eqs. 

13.14-13.16 by differences to obtain 

p { 3 )  -  p ( l )  +  p  a  [ 2  u ^ ( 6 )  -  ( 1 )  -  5 ^ ( 3 ) ]  =  0  ( 1 3 . 1 7 ^  

p ( 4 )  -  p ( 2 )  +  p  a  6 j  [ 2  U j ( 6 )  -  ( 2 )  -  G u ( 4 ) ]  =  0  ( 1 3 . 1 8 )  

2 p(6) + 2 p(5) - p( l )  -  p(2) - E^3) - p(4) 

+  p  a  { a j [ U j ( 3 )  -  U j ( l ) ]  +  B j [ U j ( 4 )  -  U j ( 2 ) ] }  =  0  

( 1 3 . 1 9 )  

where the numbers in parentheses denote points in the character­

istic network. 

2. Stability of the basic difference scheme 

The von Neumann stability analysis must include all 

aspects of thp nuTTipri algorithm, including interpolation 

and the basic difference equations. However, to illustrate 

the stability characteristics of each of these operations, the 

basic difference scheme and the interpolation scheme are 

studied individually. Following these studies, the overall 

algorithm including both the basic difference scheme and inter­

polation scheme is analyzed. 

Before analyzing the basic difference scheme, it can be 

seen from Figure 13.2 that the differential domain of 

dependence extends outside the convex hull of the difference 
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A x  DIFFERENTIAL DOMAIN 
OF DEPENDENCE 

A x  

Û  A t  

DIFFERENCE SCHEME 

Figure 13.2. Basic difference scheme network in initial data 

surface. Differential domain of dependence and 

convex hull of difference scheme 
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scheme. Hence, according to the CFL stability criterion, an 

unstable result is expected. 

It is assumed that an analytical solution of the system of 

linear difference equations can be obtained by separation of 

variables (ref. 29). For the purpose of stability analysis it 

is sufficient to examine the solution for only one arbitrary 

component of the Fourier series representation of the initial 

data. The complete solution is obtained by superposition of 

all such terms necessary to represent the initial data. The 

form of a general term is assumed to be 

^1 ^2 
imïï — iniT — 

Û  =  e  e  T ( t )  ( 1 3 . 2 0 )  

where 

u = 

u. 

v 

U ^ ( t )  

u^tt) 

P  ( t )  

The frequency indices m and n are for the particular Fourier 

components in the x^ and directions, respectively, L is a 

characteristic length such that x^ and x^ have the range -L to 

L, and T(t) is a vector function of the variable of integration, 

t. 

To simplify the analysis, the reference vectors and 3^ 

are directed along the coordinate axes, and Xg, respectively. 
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With this orientation of and the linearized difference 

equations, Eqs. 13.17-13.19, become 

p ( 3 )  -  p ( l )  +  p  a [ 2  u ^ { 6 )  -  u ^ ( l )  -  u ^ ( 3 ) ]  =  0  ( 1 3 . 2 1 ;  

p ( 4 )  -  p ( 2 )  +  p  a [ 2  U 2 ( 6 )  -  ( 2 )  -  =  0  ( 1 3 . 2 2 )  

2  p ( 6 )  +  2  p ( 5 )  -  p ( l )  -  p ( 2 )  -  p { 3 )  -  p ( 4 )  

+  p  a [ u ^ ( 3 )  -  u ^ ( l )  +  ^ 2 ( 4 )  -  U g C Z ) ]  =  0  ( 1 3 . 2 3 )  

The coordinates of the base points may be written relative to 

t h e  c o o r d i n a t e s  o f  p o i n t  ( 6 )  a s  ( s e e  F i g u r e  1 3 . 2 )  

Point (1): x^(l) = x^(6) - (u^ + a) At 

x2(l) = xgtg) - u2at 

P o i n t  ( 2 ) :  x ^ ( 2 )  =  x ^ ( 6 )  -  u ^ A t  

X 2 ( 2 )  =  ^ 2 ( 6 )  -  ( U 2  +  a )  A t  

P o i n t  ( 3 ) :  x ^ ( 3 )  =  x ^ ( 6 )  -  ( u ^  -  a )  A t  

x ^ ( 3 )  =  x ^ ( 6 )  -  u u A t  

P o i n t  ( 4 ) :  x ^ ( 4 )  =  x ^ ( 6 )  -  u ^ A t  

X 2 ( 4 )  =  X 2 ( 6 )  -  ( U 2  -  a )  A t  
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P o i n t  ( 5 ) :  x ^ ( 5 )  =  x ^ ( 6 )  -  u ^ A t  

*2(5) = (6) - ugat 

The assumed form of the solution, Eq. 13.20, evaluated at each 

of these network points yields 

x ,  ( 6  )  x „  ( 6 )  .  ^  
1„ -1 -ie(g +i)4t "i21û,at 

U ( l )  =  e  e  ^  ( e  ^  ^  ) T ( t ( 6 ) - A t )  

( 1 3 . 2 4 )  

irnw imi ^2^ "ifis.it -im(G +;,At 

0 ( 2 )  =  e  ^  e  ' '  ( e  ^  e  ^  ) T ( t ( 6 ) - i t )  

( 1 3 . 2 5 )  

im, ir.TT "ifilS,-5) At 'î G^At 

U ( 3 )  =  e  ^  e  ( e  e  ) T ( t ( 6 ) - A t )  

( 1 3 . 2 6 )  

im, in, -iSj At ' ifL(5 i)ât 

Û ( 4 )  =  e  e  ( e  ^  e  ) T ( t ( 6 ) - A t )  

( 1 3 . 2 7 )  

im. Li;:: in. zz!:: -iHi -isi û,at 
Û ( 5 )  =  e  ^  e  ^  ( e  ^  ^  e  ^  ^  )  T ( t ( 6 ) - A t )  

( 1 3 . 2 8 )  

x^(6) x (6) 
imit —-— intt t J 

U ( 6 )  =  e  e  T ( t ( 6 ) )  ( 1 3 . 2 9 )  
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Equations 13.24-13.29 contain the common factor 

i ^ x  ( 6 )  x . ( 6 )  
e ^ ^ e ^ 2 

and the difference equations, Eqs. 13.21 through 13.23, are 

homogeneous in the dependent variables; thus the common factor 

may be eliminated. Substitution for the respective dependent 

variables from Eqs. 13,24-13.29 into the difference equations 

Eqs. 13.21-13.23 yields 

-i4>o 
U ^ ( t ( 6 ) )  -  e  e  [ c o s O ^ U ^ ( t ( 6 )  - A t )  

-i  ̂  sin(|)j^P(t(6) -At)] = 0 (13.30) 

P â 

U g l t f E ) )  -  e  e  [ c o s ( j ) , U ,  ( t  ( 6 )  - A t )  

- i  s i n ( { ) . P { t ( 6 )  - A t ) ]  =  0  ( 1 3 . 3 1 )  

P a 

P ( t ( 6 ) )  +  e  e  [  ( 1  -  c o s ( t ,  -  c o s 4 2 )  P ( t ( 6 )  - A t )  

+ i  p a (sin<j)^U^(t(6) -At) + sin(j)2U2 (t (6) -At))] = 0 (13.32) 
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where 

4)1 = ( 1 3 . 3 3 )  

= 21 5 At ( 1 3 . 3 4 )  

= 

r- "i" 
( 1 3 . 3 5 )  

*4 f *2^^ 
( 1 3 . 3 6 )  

In matrix notation, Eqs. 13.30-13.32 can be written as 

U ( t ( 6 ) )  +  A  U ( t ( 6 )  - A t )  =  0  ( 1 3 . 3 7 )  

where the matrix A, 

-COS<{). 

A = e 
-i(j)3 -i^^ 

-cost}). 

i  p a sintj)^ i  p a sin#. 

i  sin#. 
hi 1 

i sincfi, 

P a 

(1-cos#^ - cos^g) 

( 1 3 . 3 8 )  

is called the amplification matrix of the system of difference 

equations. 

The von Neumann stability criterion, Eq. 13.4, requires 

that the eigenvalues of the amplification matrix satisfy the 

inequality 

U |  <  1  +  0 ( A t )  ( 1 3 . 3 9 )  
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where X is any of the three roots of the determinantal equation 

| A  -  X I I  =  0  ( 1 3 . 4 0 )  

Expansion of Eq. 13.40 yields the third-order polynomial 

2 2 
s i n  ^ ^ ( c o s # 2  -  ̂ ') + sin - X ' )  

•H (costpj^ + cos^2 - 1 + X')(cos(})^ + X')(cos^2 + ^') = 0 (13.41) 

1*3 1*4 
X '  =  e  e  ^  X  ( 1 3 . 4 2 )  

The transformation in Eq. 13.42 does not change the magnitude 

o f  t h e  e i g e n v a l u e s ,  i . e . ,  

1 x' i = i x 1 

Hence, the magnitude of the eigenvalues of the amplification 

matrix can be obtained directly from Eq. 13.41. If as shown 

i n  F i g u r e  1 3 . 2 ,  

A x  =  (  1 u ^ I  +  a )  A t  

then the angles (})^ and in Eq. 13.41 can be reexpressed, 

a c c o r d i n g  t o  E q s .  1 3 . 3 3  a n d  1 3 . 3 4 ,  a s  

•l = HTTr (".43) 

* 2  '  &  r  ' " . 4 4 )  
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where M is the Mach number. 

The spectral radii of the amplification matrix 

were calculated from Eq. 13.41 for all combinations of angle 

sets which £ ((), 1 4)- The results 

of the eigenvalue calculation are shown in Figure 13.3 with 

the spectral radii plotted versus the frequency index 

i ^ 
yi+l l 

where 

i = (m + 1) i (13.45) 

The spectral radius, for this case, is an even periodic func­

tion of frequency index; hence, only the results of the 

I Ax 
calculation for the range of — from 0.0 to 1.0 are 

presented. 

As expected; the basic difference scheme is unstable by 

the von Neumann criterion for all values of frequency index. 

This is due to the direct violation of the necessary CFL 

stability criterion when the differential domain of dependence 

is not contained within the convex hull o£ the difference 

scheme. 

3. Stability of interpolation scheme 

The interpolation scheme developed in Appendix H to 

obtain the dependent variables at base points in the initial 

data surface must be considered in the overall stability 
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2.00 

U 
LU 
û. 
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FREQUENCY INDEX, 

Figure 13.3. Spectral radius of amplification matrix versus 

frequency index for basic difference scheme 
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analysis. However, the stability characteristics of the inter­

polation technique can be determined by treating it separately 

before coupling it with the difference equations. The approach 

used here is to consider the interpolation scheme as smoothing 

process and to analyze the stability of such a scheme. 

The analysis is simplified without loss of generality by 

assuming a square cell of nine points with mesh spacing 

Ax^ = AX2 = Ax centered about the point (6') which is the solu­

tion point (6) for the previous time plane, as shown in Figure 

13.1. Point (6'), is taken as the origin of the coordinate 

system. A general term of the Fourier series representation 

of the values to be interpolated on the initial data surface 

i s  g i v e n  b y  E q .  1 3 . 2 0  a s  

^1 . ^2 
X, x„ imiT ~ iniT ~ 

Û(~, -4, 0) = e ^ e ^ T(0) (13.46) 
ij li 

The corresponding values of the dependent variables at each of 

the nine cell points are 

U ( ^ ,  ^ , 0 )  =  Ç  n  T ( 0 )  ( 1 3 . 4 7 )  

U ( ^ ,  0 ,  0 )  =  Ç  T ( 0 )  ( 1 3 . 4 8 )  

Û ( ^ ,  -  0 )  =  C  T ( 0 )  ( 1 3 . 4 9 )  

U ( 0 ,  Û )  n T(o) ( 1 3 . 5 0 )  
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U ( 0 ,  0 ,  0 )  =  T { 0 )  ( 1 3 . 5 1 )  

U ( 0 ,  -  — ,  0 )  =  n ~ ^  T ( 0 )  ( 1 3 . 5 2 )  

û ( -  0 )  =  n  T ( 0 )  ( 1 3 . 5 3 )  

Û ( -  0, 0 )  =  T ( 0 )  ( 1 3 . 5 4 )  

U ( -  0 )  =  T ( 0 )  ( 1 3 . 5 5 )  

S  =  L  ( 1 3 . 5 6 )  

ax 
n = e"-' L (13.57) 

The least squares system of equations, in Appendix H, evaluated 

for this cell of interpolating points is 

where 
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0 6 (^)2 
It 

6 (^)2 
Jj p)

 

1 

0 0 0 
^2V 

0 0 0 
^3v 

(^)" 0 0 
^4v 

0 6 4 
^5v 

0 4 6 
^6v 

9 0 0 

0 6 0 

0 0 6 
Li 

0 0 0 

0 0 

0 0 

(Ç + + 1) (n + n"^ + 1) 

(E - E~^) (n + n"^ + 1) (^) 
jj 

(C + + 1) (n - n"^) (% 

(C - r^) (n - n"^) 

U + r^) (n + n"^ + 1) 

(C + + 1) (n + n"^) 

T^(0) (v = 1,2,3) (13.58) 
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Solution for the polynomial coefficients (y = 1,2,...,6; 

V  =  1 , 2 , 3 )  i n  E q .  ( 1 3 . 5 8 )  y i e l d s  

=  [ 5 / 9  ( Ç  +  +  1 )  ( n  +  n ' "  +  1 )  

- 1/3 (C + r^) (n + + 1) 

- 1/3 a + + 1) (n + n"^)]T^(0) (13.59) 

^2v " Ix [1/6 - r^) (n + + 1)]T^(0) (13.60) 

^ 3 v  " ̂  [1/6 (K +  +  1 )  (n -  n ~ ^ ) ] T ^ ( 0 )  ( 1 3 . 6 1 )  

^4v = (S - r^)(n - n" ^ ) ] T ^ ( 0 )  ( 1 3 . 6 2 )  

^5v ~ 1/^ (Ç + Ç ^ + 1) (n + n ^ + 1) 

f 1/2 (C + t ) (n + n +  l ) j T ^ ( O )  (13.63) 

^6V " ^[- 1/3 (C + + l)(n + + 1) 

+ 1/2 {K + + 1) (n + n"^)]T^(0) (13.64) 

Since the coefficients a,^^ are homogeneous in T^(0), we can 

write the least squares polynomial for the dependent variables, 

d£.;oted Û' , as 
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( 1 3 . 6 5 )  

where (y = 1,2 C 
f • m • f \J ) are the coefficients of T^(0) in 

Eqs. 13.59-13.64. 

In order to examine the stability characteristics of the 

interpolation scheme, consider a process in which the new 

values of the dependent variables at point (6') are calculated 

f r o m  t h e  p o l y n o m i a l ,  E q .  1 3 . 6 5 ,  w i t h  =  * 2  "  i . e . .  

The previous values of the dependent variables at point (6') 

a r e  g i v e n  b y  E q .  1 3 . 4 6  w i t h  =  X 2  = 0 ,  i . e .  

U '  ( 6 ' )  =  a [  T ( 0 )  ( 1 3 . 6 6 )  

U ( 6 '  )  =  T ( 0 )  ( 1 3 . 6 7 )  

1 3 . 6 6  a i i u  1 3 .  G 7  w e  c a n  

Û ' ( 6 ' )  =  a | Û ( 6 ' )  ( 1 3 . 6 8 )  

Hence, there is only one amplification factor or eigenvalue for 

t h i s  p r o c e s s ,  i . e . ,  
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A =  a j  =  [ 5 / 9  ( C  +  +  1 )  ( n  +  n " ^  +  D  

- 1/3 (Ç + r^) (n + ti"^ + 1) 

- 1/3 (Ç + 4- 1) (n + n"^)] (13.69) 

In terms of the angles 4*^^ and ^2' defined as 

(})^ = lUTT ^ (13.70) 

( 1 3 = 7 1 )  

cos({)^ COSO2] (13.72) 

The value of X in Eq. 13.72 was calculated for all combinations 

of angle sets 4)}, {(j), (j)^} for which <_ c}), jdu,} ^ (j). 

The magnitude of the maximum eigenvalue is 1.0 for all values 

of the angle (jj. Hence, the interpolation scheme is uncondi­

tionally stable for all Fourier components of initial data. 

4. Stability of difference scheme with interpolation 

The linear stability analysis of the overall solution 

algorithm is made by combining the linearized difference 

equations with the interpolation procedures for the dependent 

variables at the base points on the initial data surface. The 

characteristic point network is shown in Figure 13.1. In the 

linear analysis, the base points (1) through (4) are equally 

*2 - ** "t 

Eq. 13.69 can be reexpressed as 

A  =  4 / 9  [ 5 / 4  +  ( C O S Y I  T  C O a Y ? )  
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spaced around the circumference of a circle of radius aAt 

centered at point (5). These points are located by specifica­

tion of the acoustic speed, a, velocity, u^, time increment, 

At, and angle ip in the choice of the reference vectors. 

If the assumption is made that the mesh is square with 

spacing Ax^ = = Ax, then the Courant number in Eq. 13.1 can 

be expressed as 

( | û . I  +  a )  

C  =  A t  ( 1 3 . 7 3 )  

Ax 

where C ^ 1.0 indicates violation of the CFL stability 

criterion. 

The base point coordinates can be written in terms of the 

Mach numt)er, M (based on average conditions), flow angle, 0, 

reference vector angle, Courant number, C, and the relative 

. . Ax 
mesh spacing, as 

Point (1) : (c 

^ 2 _  ( M  s i n 9  -  s i n ^ )  Ax. 
L • M + 1 (C L? 

Point (2) : tC % 

* 2 ^ ^ )  _  ( M  s i n e  +  c o s i j j )  A x ^  

"L TTT— 
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Point (3) 
xl(3) (M cosO - cos^) AX\ 

M + 1 ^ L' 

*2 (3) (M sin0 - siniji) Ax> 
M + 1 ( 

Point (4) 
xl(4) 

(M COS0 + sin^) , Ax> 
M + 1 L' 

x2(4) (M sinS - cosi|j) Ax, 
M + 1 (C 

Point (5) 
(5) 

M cos9 , Ax, 
M + 1 ^ 

*2 (5) M sin0 Ax. 
wmr-

where the coordinates at the solution point (6) are x^(6) = 

x_(6' i  = 0. The va]HPS of tr ie dependent variahles ar the b^?e 

points arc determined by evaluating the interpolating 

polynomial, Eq. 13.65, i.e., 

U(I) = f(I) T(0) (I = 1,2,3,4,5) (13.74) 

where 
X. (I) x„ (I) 

fxl) = a' + a; + a^ 

X ,  (I) X g  (I) X ,  (I) - X „  (I) „ 

+ 4 'a-' '-v-' + -5 '-v-' + 4 <4r-) 

(13.75) 
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The values of the dependent variables at the solution point (6) 

are expressed in terms of the assumed exponential form of the 

s o l u t i o n ,  E q .  1 3 . 2 0 ,  e v a l u a t e d  a t  x ^ ( 6 )  =  X g f G )  =  0 ,  

Û ( 6 )  =  T ( A t )  ( 1 3 . 7 6 )  

Substitution of Û(I) (I = 1,2,,..6) from Eqs. 13.74 and 13.76 

into the linearized difference equations, Eqs. 13.17-13.19, 

with = {cos^, sin^}, 3^ = {-sin^, cos^} yields 

cos'i' U, (At) + sinii.' U_(6t) + —— [f(3) - f(l)] P(0) 

2 p a 

-  1 / 2  [ f ( l )  +  f ( 3 ) ] [ c o s t j j  U ^ ( 0 )  +  s i n ^  U 2 ( 0 ) ]  =  0  ( 1 3 . 7 7 )  

sin^ U, [Lx.) 4- cos^ U„ (At) + —-— [f (4) - f (2)] P(0) 

2 p â 

X / ^  - r  r i 4 ; j i - s i n ^  +  c o s ^  U g l O j j  =  0  Û 3 . / 8 J  

P ( A t )  +  { f ( 5 )  -  1 / 2  [ f ( l )  +  f ( 2 )  t  f ( 3 )  +  f ( 4 ) ] }  P ( 0 )  

+  ^  { c o s *  [ f ( 3 )  -  f ( l ) ]  -  s i n *  [ f ( 4 )  -  f ( 2 ) ] }  ( 0 )  

+  ^  { s i n *  [ f ( 3 )  -  f ( l ) ]  +  c o s *  [ f ( 4 )  -  f ( 2 ) ] }  U 2 ( 0 )  =  0  

( 1 3 . 7 9 )  

This system of equations written in matrix form is 

Û ( A t )  4  A  5 ( 0 )  = 0  ( 1 3 . 8 0 )  
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where A is the amplification matrix 

A = 

^11 ^12 ^13 

^21 ^22 ^23 

^31 ^32 ^33 

(13.81) 

with elements 

All " • {cos^il; [f(l) + f(3)] + sin^ijj [f(2) + f(4)]} (13.82) 

Ai2  = - 1/2 sinij; cos^ {f(l) + f(3) - f(2) - f(4)} (13.83) 

A . .  =  { c o s *  [ f ( 3 )  -  f ( l ) ]  -  s i n *  [ f ( 4 )  -  f ( 2 ) ] }  ( 1 3 . 8 4 )  

^ 2 p a 

A^i = - 1/2 sin* cos*{f(l) + f(3) - f(2) - f(4)} (13.85) 

. 2 
^22 ~ ~ {sin ip [f (Ij + f(3)] + cos * [f(2) + f(4)]} (13.86) 

A.. = J- _ {sin* [f(3) - f(l)] + cos* [f(4) - f(2)]} (13.87) 

2  p  a  

^ 3 1  =  ^  { c o s *  [ f ( 3 )  -  f ( l ) ]  -  s i n *  [ f ( 4 )  -  f ( 2 ) ] }  (13.88) 

^32 "  ̂  {sin* [f(3) - f(l)] + cos* [f(4) - f(2)]} (13 .89)  

A33 = f(5) - 1/2 [f(l) + f(2) + f(3) + f(4)] (13.90) 
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The elements of A are functions of the angles 4^ and 

defined by Eqs. 13.70 and 13.71, respectively. 

The spectral radii of the amplification matrix were 

calculated for all combinations of angle sets {4^, , {<}), 

where <_ £<}>• The results of the stability 

analysis are presented in Figures 13.4-13.11 with the spectral 

radii plotted versus the frequency index 

T M 
L 

where 

The spectral radius is an even periodic function of the 

frequency index, and only the results for the range of I  ̂  

from 0.0 to 1.0 are presented. The plots illustrate the effect 

o f  v a r y i n g  t h e  f o u r  f r e e  p a r a m e t e r s ;  ( 1 )  w a c h  n n m n e r M ;  

(2) flow angle, 0; (3) Courant number, C; and (4) reference 

v e c t o r  a n g l e ,  i p .  F o r  t h e  c a s e  t ) ;  =  0 ,  s h o w n  i n  F i g u r e s  1 3 . 4 -

13.7, the overall scheme is clearly stable (|X| £ 1.0) for the 

larger values of frequency index. However, for smaller values 

of frequency index, eigenvalues greater than 1.0 were cal­

culated in all cases. For the case ^ = 45°, shown in Figures 

13.8 and 13.9, eigenvalues greater than 1.0 were encountered 

for all values of frequency index for M = 1.0. Figures 13.10 

and 13.11 illustrate the unstable character of the method when 

the CFL stability criterion is violated (C = 1.2). In none 
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of the cases presented could the scheme be judged uncondi­

tionally stable for all values of frequency index if we choose 

for the criterion |X| £1.0. However, in all cases where the 

CFL criterion is satisfied (C £ 1.0), reductions in Courant 

number from 1.0 to 0.8 produced corresponding reductions in the 

amount by which the curves exceed X = 1.0. Hence, when the CFL 

criterion is satisfied, the scheme could be judged stable by 

the von Neumann criterion which allows maximum eigenvalues 

s o m e w h a t  g r e a t e r  t h a n  1 . 0  1  1 - 0  +  0 ( A t ) ) .  

To provide another check on the stability characteristics 

of the overall scheme, an example problem was set up for solu­

tion of a square mesh of points with uniform initial data and 

boundary conditions fixed at the initial conditions. The 

number of points in each coordinate direction was varied over 

the range from 5 to 9. Solutions were made for various values 

of the four free parameters wiLh eiiiphasib placed on the 

c r i t i c a l  c a s e s  l i k e  t h o s e  s h o w n  i n  F i g u r e s  1 3 . 8  a n d  1 3 . 9  a t  

M = 1.0. Instabilities were encountered at relatively few 

time steps (10-20) when the CFL criterion was violated (C = 

1.5). However, when the CFL criterion was satisfied, no 

instabilities occurred even after 1000 time steps. 
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XIV. APPENDIX E; 

EXACT COMPARISON SOLUTIONS 

The exact comparison solutions used to determine the 

order of the truncation error of the numerical algorithm were 

based on; (1) steady source flow, and (2) Prandtl-Meyer flow 

over a cylinder. Specialized computer programs were developed 

to compute these solutions at arbitrary points in the flow 

field. The calculations were made with 16 significant digits 

with tolerances on iterative portions maintained at 10 . 

The four dependent variables u, v, p, and p were calculated 

at the nine points of the field point initial data cell. Since 

these flows were steady, the order of the truncation error was 

determined by comparing the solution from the field point 

calculation with the exact solution at the midpoint of the 

initial data cell. 

A. Source Flow 

Steady source flow is a one-dimensional flow in which the 

properties vary only with radial distance from the point source. 

Specification of Kach nuiriber at any radial position and any two 

stagnation state properties completely determines the solution 

at any point in the flow field. In this analysis, total 

pressure, p^, total density, and the Mach number at 

radius r^ as shown in Figure 14.1 were assumed known. 
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The continuity equation, written between the upstream 

station (1) and any point in the field is 

plvr, = (14.1)  

where the nonsubscripted variables refer to the solution point, 

and v^ is the velocity. Substitution of the isentropic flow 

relations 

p  =  p g f l  +  ( 1 4 . 2 )  

. o 
p = p„  (1 + M )Y"1 (14.3)  

into Eq. 14.1 yields a relation between Mach number and radial 

l o c a t i o n ,  i . e . ,  

r. 

•v/_1 0 
/ - I  J .  I  ««"V 
\a. ' ^2— / 

Y+1 

2 ( Y - 1 )  

(1 + ̂  ) 

Y+1 
2(Y-1)  

M 
( 1 4 . 4 )  

Solution of Eq. 14.4 for Mach number at the solution point is 

necessarily iterative. Using Newton's method (ref. 71) we can 

write 

M 
i+1 mi + 

d(^) 

( i  =  0 , 1 . . . )  (14.5)  
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where the subscript i  denotes the ith cycle of the iteration. 

d(|-) 

The derivative -appearing in Eq. 14.5 is found by differ­

entiating Eq. ].4.4, the result being 

r 3-y 
d(p-). m 2 

^ a + ̂  

tiftt " 

(1 + m2) 

A linear variation of Mach number wi-h radius was assumed to 

o b t a i n  a n  i n i t i a l  e s t i m a t e  f o r  M  i n  E q -  1 4 . 5 .  

Following the solution for Mach number, the dependent 

variables p and p were found from Eqs. 14.2 and 14.3. The 

velocity v^ was determined using the definitions of Mach 

n u m b e r  a n d  a c o u s t i c  s p e e d ,  i . e . .  

v^ = M 

1 u 
ï2 ( 1 4 . 7 )  

P 

The velocity components u and v can be expressed in terms of 

the velocity, v^, and the flow angle 0 as 

u = v^ cos6 (14.8) 

V = v^ sin0 (14,9) 

where the flow angle is equal to the polar angle given by 

e = tan"^(^) (14.10) 
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B. Prandtl-Meyer Flow over a Cylinder 

Prandtl-Meyer flow over a cylinder is a simple wave flow 

in which the flow properties are constant along Mach lines 

propagating from the cylinder. In this analysis, the air flow 

over the cylinder was assumed in a clockwise direction so that 

left-running Mach lines were simple waves as shown in Figure 

14.2. Also, it was assumed that the Mach number M^ at a point 

upstream on the cylinder (point (1) in Figure 14.2) was known 

along with stagnation pressure, p^,'and stagnation density, 

Point (3) in Figure 14.2 represents any solution point in the 

flow field, and point (2) the intersection of the cylinder and 

the left-running Mach line through point (3). Hence, the 

p r o p e r t i e s  a t  p o i n t  ( 3 )  a r e  t h e  s a m e  a s  t h o s e  a t  p o i n t  ( 2 ) .  

The coordinates of points (2) and (3) are related through 

t h e  d i r e c t i o n  e q u a t i o n  f o r  a  l e f t - r u n n i n ?  M a c h  l i n e ,  i . e . .  

where 9 is flow angle, and vt Mach angle. Since the properties 

are constant along left-running Mach lines, from Eq. 14.11 we 

can write the exact relation 

^ = tan( 0  +  y) (14.11) 

(14.12) 
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If trigonometric identities and the relation between the flow 

angle and the polar angle (}) for points on the cylinder, 

e = (f> - tt/2 (14,13) 

are introduced, Eq. 14.12 can be reexpressed as 

y3 - y9 tan#- tany, - 1 
_£ £ = f z fi4 1 g \ 

tan$2 + tanp^ 

Next, substitution of the coordinate transformation relation 

tan# = y/x (14.15) 

into Eq. 14.14 gives 

Y2 " y2 y2 

Xg - X, Yo + X. tanvi. 
( 1 4 . 1 6 )  

Finally, elimination of x^, yg and y^ between Eq. 14.16 and 

the following geometric relations 

Xg + yg = (14.17) 

x^ + y^ = r^ ' (14.18) 

tan#2 = y3/^3 (14.19) 

yields (after considerable rearrangement) 



www.manaraa.com

209 

y-2 = COSU2 cos ($2 - U2^ " sintOg - ^2^ 

[1 - (—) cos^u,]^} 
^3 ^ 

( 1 4 . 2 0 )  

Equation 14.20 provided a basis for an iterative solution for 

t h e  c o o r d i n a t e s  o f  p o i n t  ( 2 ) .  T h e  v a l u e  o f  ^ 2  E q .  1 4 . 2 0  

was initially estimated as 1^2 = Vj* and was corrected as out­

lined below. Once the solution for was obtained from Eq. 

14.20, y2 was determined from Eq. 14.17. 

Using the estimate for the coordinates at point (2) from 

the above analysis, the Mach numbers at points (1) and (2) were 

related through the corresponding Prandtl-Meyer angles by the 

simple wave relation 

v2 - = 81 ( 1 4 . 2 1 )  

where the flow angles 9^^ and 8g were found from Eq. 14.13. 

The Mach number M2 was determined iteratively from the defini­

t i o n  o f  t h e ' P r a n d t l - M e y e r  a n g l e ,  i . e . ,  

V (M) = i±1 
Y-1 

tan 
- 1  ^  - 1 '  - tan'l - 11% (14.22) 
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Using Newton's method, we can write the recursive relation 

"i+i = "i + 

V - V . 
1 

dv 

dM 

( i  =  0 , 1 . . . )  ( 1 4 . 2 3 )  

where the subscript i  denotes the ith cycle of the iteration, 

and where the derivative ^ was found by differentiating 

E q .  1 4 . 2 2 ,  i . e . ,  

dv 
( 1 4 . 2 4 )  

The given Mach number at point (1) was used as the initial 

estimate for M in Eq. 14.23. To close the iteration for the 

Mach number and the coordinates X2» Y2' Mach angle U2 

was determined from the relation 

y = sin"-^ (g) (14.25) 

and substituted back into Eq. 14.20. This process was 

continued until convergence on y2 achieved. 

After the Mach number at point (3) was determined, the 

pressure p^ and density were found from the isentropic 

relations, Eqs. 14.2 and 14.3, respectively. The velocity q^ 

was determined from the relation 

% 
(14.26) 93 = 

YP-

P3 
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Finally, the velocity components and Vg were determined 

from the relations 

u3 = q^cosg. 

= q^singg 

where the flow angle 9^ was found from Eq. 14.13 with (j) = (l)^. 
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XV. APPENDIX F: 

ONE-DIMENSIONAL UNSTEADY FLOW EXAMPLES 

Three examples of one-dimensional unsteady flows were 

solved using the field point and boundary point algorithms 

developed in Chapters m and IV. The results of these solu­

tions are presented in this section. Where available, solu­

tions obtained by the method of characteristics for one-

dimensional unsteady flow were used for comparison. These 

results indicate that the boundary point calculations yield 

properly posed boundary conditions, and that accurate solutions 

of transient flows can be obtained using the present method. 

In these solutions, a rectangular grid with mesh spacing 

Ax was overlaid on a straight duct (see Figure 15.1a). The 

grid had three points along each constant-x panel, which is 

the minimum number of points needed to incorporate the initial-

data interpolation scheme (ses Appendix H). Only those points 

along the center panel on the duct centerline were calculated 

in the solution. The dependent variables at points along the 

bounding constant-y panels were set equal to the values of the 

corresponding dependent variables at each grid point along the 

duct centerline. 

A. Centered Expansion Wave, Semi-Infinite Duct 

In this first example, a semi-infinite duct pressurized 

with air at pressure Pq is instantaneously opened to the 
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atmosphere at pressure p^. A centered expansion wave 

propagates into the duct as shown in Figure 15.1. The wave 

accelerates the air from the stagnation state to a uniform 

state at the ambient pressure. For the unchoked condition 

(Pa/Po ^ 0.278), the transient flow is determined by the stagna­

tion conditions in the duct and the ambient pressure. 

In the numerical -r^lution, the semi-infinite duct was 

approximated by a duct of length L = 1 ft., shown in Figure 

15.1a, and the boundary conditions at the upstream end of the 

duct were fixed at the stagnation state. Field point calcula­

tions (chapter III) were made at interior points, while at the 

end of the duct the downstream boundary point calculation 

(Section IV.D.) was employed. Only the transient flow prior 

to the time the expansion wave reaches the upstream end of the 

d u c t  w a s  i n v e s t i g a t e d .  T h e  s o l u t i o n  r e s u l t s  f o r  P ^ / Pq =  0 . 8  

shown in Ki mire 15.2a v.'here pressure ratio is plotted 

versus time at x = -0.2 ft. for different mesh spacings. Also 

shown is the exact solution obtained from the method of 

c h a r a c t e r i s t i c s  f o r  o n e - d i m e n s i o n a l  u n s t e a d y  f l o w  ( r e f .  7 2 ) .  

The results of the present method agree well with the exact 

solution and also demonstrate the degree of resolution which 

c a n  b e  a c h i e v e d  w i t h  a  r e l a t i v e l y  f i n e  m e s h  ( A x  =  0 . 0 1  f t . ) .  

As further comparison, results by Serra (39) for this 

problem using the Lax-Wendroff finite-difference method are 

presented in Figure 15.2b. The better agreement of the present 
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method with the exact solution over Serra's method is evident. 

B. Centered Expansion Wave, Finite Duct 

In this case, a finite duct fil led with air is 

instantaneously opened to the atmosphera where the ratio of 

ambient pressure to stagnation pressure in the duct, p /p , was 
a u 

0 . 3 8 7 .  A  c e n t e r e d  e x p a n s i o n  w a v e  p r o p a g a t e s  u p s t r e a m  a n d  

reflects in like sense from the closed end of the duct, as 

shown in Figure 15.3. The region of interaction between the 

incident and reflected waves is a nonsimpie wave region 

through which the gas overexpands to a uniform state with 

P/PQ = 0.129 at the closed end of the duct. 

In this example, the body point calculation (Section IV.B) 

was used to compute the solution at the upstream end of the 

duct at J- = -1.0. The pressure variation with time at this 

peint is shewn in Figure 13.4. No exdoi auiution exists for 

the flow through the non-simple wave region; however, the 

results of a graphical characteristics solution by Owczarek 

(72) have been included in Figure 15.4 for comparison. The 

agreement of results of the present method and the graphical 

solution is extremely good. 

C. Centered Expansion Wave, Subsonic Inflow 

This problem is similar to the preceding example, with the 

exception that a plenum (in which the stagnation state is fixed) 
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is attached to the duct at the upstream boundary (^ = -1.0). 

In this case, the centered expansion wave propagating upstream 

reflects at the upstream boundary as a weaker compression wave, 

as shown in Figure 15.4. The compression wave moves downstream 

and reflects in opposite sense from the downstream boundary. 

This process of expansion and compression is repeated until a 

uniform steady flow corresponding to the constant inlet 

stagnation state and downstream static pressure is reached 

throughout the duct. 

In this example, the upstream boundary point calculation 

(Section IV.C) with the velocity component u^ set to zero was 

employed at the upstream end of the duct. Pressure variations 

with time at two points along the duct (^ = -1.0, ^ = -0.5) for 

ax 
a sparse grid (-g- = 0.1) are shown in Figure 15.6. It is 

observed from Figure 15.6 that the steady state solution was 

2,1 t 
reached throughout the duct when -j— = 17. Also, separate 

e x p a n s i o n  a n d  c o m p r e s s i o n  w a v e s  a r e  d i s c e r n a b l e  a t  t h e  ^  =  - 0 . 5  

location. 
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2 

M DIRECTION OF «"S 
O WAVE PROPAGATION | ° 

Duct geome try 

DIMENSIONLESS DISTANCE ALONG DUCT, * 

Wave diagram 

gure 15.5. Duct geometry and wave diagréim representation 

for the centered expansion Wcive, subsonic 

inflow, finite duct problem 
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PRESENT METHOD SOLUTION 

MESH SPACING, = 0.1 

0.9 

0 . 8  

0IMEMS1ONLES5 TIME 

Figure 15.6. Centered expansion wave, subsonic inflow, finite duct problem 

Pressure variation with time at locations x/L = -1.0 and 
x/L = — 0.5 
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XVI. APPENDIX G; 

QUADRIC CONE GEOMETRY 

Tha numerical solution of two-dimensional unsteady flows 

incorporating the method of characteristics involves solution 

of compatibility relations written on characteristic surfaces 

in three space. The envelope of characteristic wave surfaces 

at a point in the space is locally tangent to the character­

istic cone which is represented by a quadratic equation in the 

space coordinates. A discussion of quadric cone geometry, as 

needed in the mathematical formulation of the method of 

characteristics and in the numerical solution of the character­

istic relations, is presented here. This material is based on 

the work of McConnell (73). 

A. Equation of a Plane 

1 2 
Let P^, P^ and P^ be three points with coordinates , x^ 

and x^, respectively, as shown in Figure 16.1. Here, the 

notation x. is used to denote the point coordinates or, 

equivalently, a vector with components = {x^, x^, x^}. If 

the point x^ lies in the plane of points P^, P^ and P^, then 

12 3 
the difference vectors x. - x., x. - x. and x. - x. are 

1 1 1 1  1 1  

linearly dependent, i.e., 

l l  f  2 l  3 l  
a  ̂ x .  -  X .  +  b  X .  - +  c  X .  -  X .  
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12 3 
Figure 16.1. Vectors x^, x^, x^ with endpoints , P^ 

lying in a plane 

CONE 

Figure 16.2. Vector lying 

with vertex x? 

along a generator of a cone 
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where a, b and c are scalars. Equation 16>1 can be written in 

component form as 

a|x^ - + b xi - x^ + c xi - x^ 

^2 
- x^ + b 

^2 4 
+ c 

/'2 - ^2 
= 0 

*3 • 4 
+ b 

^3 4 
+ c 

^3 ' • ^3 
= 0 

= 0 

This system of equations provides three equations for the 

numbers a, b, and c and can be written in matrix form as 

X, - x" 

^2 " ̂ 2 

xi x^ 

^2 " ̂ 2 

1 2 
[23 " "3 "3 " "3 

xi - x^ 

^̂ 2 - ''2 
b =0 (16.2) 

' _ ^ F ^ I I 
3 3̂j 

If a unique solution for a, b, and c exists, then the deter­

minant of the coefficient matrix in Eq. 16.2 must vanish, i.e.. 

'2 ' ^2 

x3 - x] 

*2 " ̂ 2 

x3 - x^ 

xt - xt 

xg - xg 

^3 ~ ̂ 3 

= 0 (16.3) 
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Equation 16.3 can be expressed as the sum of four determinants 

whose elements involve only one component of the elements of 

'-.he determinant in Eq. 16.3, i.e.. 

+ 

x, 

x. 

x, 

x, 

x, 

X ,  

X ,  

x^ 

X ,  

x, 

X ,  

X ,  

X .  

x, 

x 

+ 
,1 
'2 

X ,  

X r  

X ,  

x, 

X ,  

X ,  

X .  

(15.4) 

which is a linear equation in the x^. Therefore, any linear 

combination in x^, 

"i^i ^ 
(16.5) 

is the equation of a plana. If any one of the vectors x^. x^, 

or xf is a null vector, then the plane passes through the 

origin and Eq. 16.4 can be written 

a^x^ — 0 (16.6) 
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B. Equation of a Quadric Cone 

A quadric cone is the locus traced out by a family of 

xJ.n3s which all pass through a point x? and whose unit vectors, 

shown in Figure 16.2, satisfy a relation of the form 

° (16.7) 

where is a symmetric second order tensor. The point x9 is 

called the vertex of the cone and the lines are called the 

generators of the cone. 

If x^ is any point on the cone, then we can write 

xi = x? + c2^ (16.8) 

where c is an arbitrary scalar. Solution for in Eq. 16.8 

and substitution into Eq. 16.7 gives 

u U  
X .  -  X  

X
 

1 X
 

II 

1 1 lj
 (16.9) 

which is the equation of the cone. If the vertex of the cone 

is at the origin, Eq. 16.9 reduces to 

A..x.x. = 0 (16.10) 
1] 1 ] 

C. Tangent Plane to a Cone 

Consider a point with coordinates x^ which lies on the 

line joining the points Pq(x9) and P(x^). If k is the ratio of 

the distances a/b shown in Figure 16.3; then the coordinates of 
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Vectors X . ,  x"xt with -
1 1 1 

lying on a straight line 

Figure 16.4. Line P^P intersecting a cone at points P^ 
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can be expressed in terms of the coordinates of Pq  and P as 

, X? + kx. 

4 = ̂ t-tk-

Let the point P^ lie on a cone, as shown in Figure 16.4, 

then the coordinates of P^ satisfy Eq. 16.10,- i.e., 

Aijxfxj = 0 (16.12) 

substitution of xf from Eq. l.fi-H into Eq. 16.12 yields 

A. .x9x? + 2kA. .x?x. + k^A. x.x. = 0 (16.13) 
1] 1 ] id 1 d 1] 1 ] 

Equation 16.13 is a quadratic equation in k, the roots of 

which are the ratios in which the two points of intersection of 

PqP with the cone divide the line P^P. 

If the Doint P^ also lies on the cone, then 
u 

A..x9x° = 0 (16.14) 
1] 1 ] 

and Eq. 16.13 reduces to the equation 

k(2A.^x?x^ - kA^^x^x^) = 0 (16.15) 
—  J  —  J  — —  J  

The root k = 0 in this equation corresponds to the point x?. 

If the other root is zero the line P^P just touches the cone 

at Pq, as shown in Figure 16.5. According to Eq. 16.15, the 

condition for the vanishing of the second root is 
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X/ 
cone 

tangent plane 

Figure 16.5. Tangent plane to a cone 

mal 

tangent plane 

reciprocal cone 

Figure 16.6. Cone and reciprocal cone 
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aj^.x9x. = 0 (16.16) 

which is the equation of a plane through the origin [Eq. 16.6]. 

Any vector which is a scalar multiple of x? satisfies Eq. 16.16; 

therefore, x? lies in the plane and Eq. 16.16 is the equation 

of a tangent plane to the cone along the generator through x?. 

The vector x^ is any vector in the tangent plane. 

D. Reciprocal Cone 

The reciprocal cone is the locus of lines which are 

perpendicular to the infinite family of tangent planes to a 

cone, as shown in Figure 16.6. 

Consider the equation of a cone whose vertex is at the 

origin, 

A ^ j X ^ X j  =  0  ( 1 6 . 1 7 )  

If is an arbitrary point on the cone, then 

aijxfxj = 0 (16.18) 

is the equation of the tangent plant to the cone along the 

generator through x^. Let 

C j  =  ( 1 6 . 1 9 )  

then Eq. 16.18 can be written as 

cjxj = 0 (16.20) 
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It is apparent from the form of this equat^ on that the vector 

C.. is orthogonal to which is any vector in the tangent 

• 'lane. 

The equation of the reciprocal cone can be expressed, in 

general, as 

= 0 (16.21) 

where the coefficients are to be determined. Since the 

vector is along a generator of the reciprocal cone, it will 

satisfy Eq. 16.21, i.e., 

bijcicj = 0 (16.22) 

Substitution of Cj^ from Eq. 16.19 into Eq. 16.22 yields 

Moreover, x} is an arbitrary point on the cone, therefore, we 

can write Eq. 16.23, in general, as 

®ij\i^iijV2, " ° (16.24) 

Comparison of Eqs. 16.17 and 16.24 yields the equation 

^ij\i\j (16.25) 

for determining the elements EUj. 

If A is the matrix of elements A^j, then 

AA"^ = I (16.26) 
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where I is the unit matrix. An equivalent expression of Eq. 

16.26 in index notation is 

(16.27) 

where a^^j are the cof actors of a^^ and |a| is the determinant 

of a. 

* * 
Multiplication of Eq. 16.25 by A^A^^ gives 

m [hjhnj 
(16.28) 

or, with substitution of Eq. 16.27 

^ij^im^jnl^l = vkn vl6.29) 

Hence, it follows that 

®mnl^l " \m (16.30) 

Since the elements A^^ are symmetric, the cofactors are 

symmetric and Eq. 16.30 can be written 

b. = -i3- e at̂  
"I IA! 

(16.31) 

-1 -1 
where A^^^ are the elements of the inverse matrix A ^ Accord­

ing to Eqs. 16.21 and 16.31, the equation of the reciprocal 

cone is 

at^xixj = ô (16.32) 
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E. Conjugate Points with Respect to a Cone 

Let the line joining the points Pg(x?) and P(x^) intersect 

a cone as shown in Figure 16.4. The roots, k, of Eq. 16.13 

are the ratios in which the two points of intersection of PqP 

with the cone divide the line P^P. Here the points x9 and 

do not, in general, lie on the cone. 

If the roots of Eq. 16.13 are equal in magnitude but 

opposite in sign, then the points Pq and P are called harmonic 

conjugates with respect to the cone. According to Eq. 16.13, 

this condition is expressed as 

A . . x 9 x .  = 0  ( 1 6 . 3 3 )  
-d ^ ] 

which, for point Pq fixed, is the equation of a plane through 

the origin [Eq. 16.6]. This plane is called the polar plane 

of with respcct tc the cone. Hence, the point Fq and any 

point in its polar plane are harmonic conjugates with respect 

to the cone. The polar plane of the point Pq, lying outside 

t h e  c o n e ,  a n d  t h e  p o i n t  P ^ ( x f ) ,  l y i n g  i n  t h e  p o l a r  p l a n e  o f  P q  

inside the cone, are shown in Figure 16.7. If the point Pq 

lies on the cone, its polar plane is the tangent to the cone 

through Pq [Eq. 16.16 and Figure 16.5] and the corresponding 

roots, k, of Eq. 16.13 both vanish. 

The equation of the polar plane of a point P^(x^) is 

A^jX^Xj = 0 (16.34) 
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POLAR PLANE OFP, 

CONE 

POLAR PLANE OFP^ 

POLAR PLANE OF P. 

Figure 16.7. Polar planes of points Pg, P^, and mutual 

conjugate diameters OP^, op^, op^ of a cone 
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If lies in the polar plans of Pq, then the coordinates xf 

satisfy Eq. 16.33, i.e., 

aijxjxj = 0 (16.35) 

Upon examination of Eqs. 16.34 and 16.35 we see that the polar 

plane of passes through Pq, as shown in Figure 16.7. There­

fore, a point always lies in the polar plane of its conjugate 

point. 

If £? is a unit vector in the direction of x?, then 

X? = c£° (16.36) 

where c is a scalar. Substitution for x? from Eq. 16.36 into 

Eq. 16.33 we get 

c A _ j 2 ° X j  =  0  ( 1 6 . 3 7 )  

Hence, the polar planes of all points along the line through 

x9 corresponding to different values of c in Eq. 16.37 coincide 

and this plane is called the conjugate plane of a given line. 

If P^ and Pq are conjugate points with respect to a cone 

then all points along the line through OP^ are conjugate to all 

points along the line through OP^. Two such lines are called 

conjugate diameters of the cone. Two lines with unit vectors 

2? and &are conjugate diameters if 

A. = 0 (16.38) 
-  J  -  J  
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There exist an infinite number of diameters which are conjugate 

to a line through the origin, 0, and they are the infinite 

number of lines through 0 lying in the conjugate plane of the 

given line. 

The polar planes of the points Pq 

are given by the equations 

4 • 'ik 
and x2 

] 

A^jxjxj = 0 (16.39) 

AijX^Xj = 0 (15.40) 

a^jx^xj = 0, (16.41; 

respectively. The lines through OP^, OP^, OP^ are called 

mutual conjugate diameters if 

A.^x?x^ = 0 (16.42) 
— J — J 

A^jX^Xj = 0 (16.43) 

=0 (16.44) 

It is apparent from these two sets of equations that two of the 

points lie in the polar plane of the remaining point, as shown 

in Figure 16.7. For a given line there exist an infinite 

number of conjugate diameters lying in its conjugate plane. 

Hence, there exist a doubly infinite set of mutual conjugate 

diameters for a cone. 
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F. Canonical Equation of a Cone 

Let the lines along OP^, OP^ and OP^ be mutual conjugate 

diameters of a cone, then, according to Eqs. 16.42, 16.43 and 

16.44, we have 

A..xfx^ = A,. x ?x? = A..x?x^ = 0 (16.45) 
1] 1 ] 1] 1 ] 1] 1 1 

12 3 
Let the vectors x^, x^, x^ represent a new system of basis 

vectors, then in the new basis 

x }  =  6 ( 1 6 . 4 6 )  

X? = 5. (16.47) 

X? = 5^3 (16.48) 

where the overbar indicates quantities measured in the new 

basis. It should be noted that the new coordinate system is 

not necessarily a cartesian system (uniform scaling along the 

three axes). The equation of a cone is invariant with respect 

to coordinate transformations, therefore, from Eqs. 16.45-

16.48 we have 

Â . . x f x ^  = A . . 5 . t 6 . « = A , ^ = A „ ,  = 0  ( 1 6 . 4 9 )  
1] 1 ] ij il liC 12 21 

^IjVj = \j^l2®j3 = ̂ 23 = &32 = 0 (16.50) 

= ^31 ' h i ' "  <"•") 
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Hence, the equation of the cone in the barred system is 

Â i i ( X i ) ^  +  =  0  ( 1 6 . 5 2 )  

which is called the canonical form of the equation of the cone. 

There are an infinite number of coordinate systems in which the 

equation of the cone can be expressed in canonical form and 

they correspond to the infinite number of sets of mutual con­

jugate diameters of the cone. Moreover, we may take any points 

along the mutual conjugate diameters as unit points and the 

equation of the cone will still be in canonical form. In 

particular we may choose the points such that the nonzero 

coefficients in the canonical form of the equation of the cone 

may all be plus or minus unity. 
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XVII. APPENDIX K: 

LEAST SQUARES BIVARIATE INTERPOLATION SCHEME 

In the numerical integration procedures the values of the 

four dependent variables and their spatial derivatives are 

needed on the initial data surface at the intersections of the 

bicharacteristics and the particlc path. Since only discrete 

data at the grid points are known, interpolation procedures are 

required. 

An interpolation scheme using locally fitted, second-order 

least squares bivariate polynomials was selected. In this 

method che polynomials are fit to the given data at nine points 

by the method of least squares. The points selected are the 

point whose physical space coordinates are the same as those at 

the solution point and its eight neighbors in the logical array 

point s tenez1 shown in Figurs 17.1. It should be noted that 

these neighboring points do not necessarily coincide with the 

eight nearest neighbors in the physical space. This scheme 

results in a considerable simplification in accounting pro­

cedures over that using the eight nearest neighbors since no 

metric information is needed in determining the cell points. 

Numerical studies have shown that the accuracy of both methods 

are comparable. The global interpolation process consists of 

the use of overlapping two-dimensional fits. 
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o "9 -0 

o 

lt-

Figure 17.1. Logical array point stencil for bivariate 
interpolation 
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The interpolating polynomial has the form 

( 1 7 . 1 )  

where ( v  =  1 , 2 , 3 , 4 )  represent the dependent variables u, v, 

p and p, respectively, x and y are the rectangular cartesian 

space coordinates and a^^ (y = 1,2,...6? v = 1,2,3,4) are the 

polynomial coefficients. The coefficients for each dependent 

variable are obtained by fitting the known data at each point 

of the nine point cell using the method of least squares. 

Derivatives of the dependent variables are determined by dif­

ferentiating the interpc] ac:.ng pol^ cniiax. 

Collocation at all cell points is achieved only if the 

miniirram number of points corresponding to the number of 

coefficients in the interpolating polynomial, which is six, is 

used. However, the loss of accuracy due to the redundancy 

"i n r rnn 11 pori ncinrr nino r>r\ inf-c ic em^ll anri 4 c rvf-i-oo-h hTT f-'h o 

advantage of computing ease of both the dependent variables 

and their derivatives. 

The least squares interpolation procedure has an added 

advantage over the methods in the solution of flows with 

locally supersonic regions where weak shocks can be expected 

to occur. Shocks introduce discontinuities in the solution 

surfaces which cannot be handled by the method of character­

istics itself and therefore require the addition of special 

shock tracing procedures. These procedures involve treating 
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the shock wave as a boundary, satisfying the Rankine-Hugoniot 

conditions across the shock and the basic field equations on 

?dch side. In addition, independent interpolations are 

required on both sides of the shock. However, in the case of 

weak shocks the least squares interpolation method can be 

expected to smooth out the discontinuity such that special 

treatment is not required. 

Let the known values of the dependent variables at the 

cell points whose coordinates are x^, y^ (i = 1, -2 ,-...9) be 

designated by u^ (i = 1, 2 , . . . 9) where the subscript v has the 

range v  = 1, 2, 3, 4 corresponding to the variables u, v, p 

and p ,  respectively. The values of the dependent variables 

calculated from the interpolating polynomial at the cell 

i ' 
points, denoted by u^ are 

where the repeated indices do not imply summation. The sum of 

the squares of the differences between the known values and 

the values obtained from the interpolating polynomial are• 

given by the equation 

. 2 . £. 
X u 

V 

(17.2) 

i=l 
(17.3) 
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or using Eq. 17.2 

y . . . , .2 2 

- ̂ sv*^ - ̂ 6^ 
i.—x 

(17.4) 

is a measure of the error in the interpolating polynomial 

a n d  is minimized by varying the coefficients a^^ (y = 1,2,...6) 

such that 

asy as^ asy as^, 

"^iv ^^2v b*3v 

= 0 

(17,5) 

Equation 17.5 provides six conditions for the coefficients 

a^^ (y = 1,2,...6). With the indicated differentiations in 

Eq. 17.4 performed, these six conditions become 

2 2 
9a, + Zx-a-^ + Ey^a, , + Ex^^a. , + Ex^ a. , + Zy"" a = Zu^ 

.2 . . 2 .3 

ilx^ai^ + ix^ aj^ + sxvaj^ + y^a4„ + =5^ 

i i 

(17.6) 

+ Sx y ag^ = Zu^x (17.7) 

2 2 2 

.3 
4- Zy^ ag^ = Zujy^ (17.8) 
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2  2  . 2 . 2  . 3  

y"^^2v ^3v ^ ^4v + y^^sv 

o 
1 i^_ ^._i .1 i 

+ Ex y ag^ = EUyX y (17.9) 

.2 .3 .2 . .3 . .4 
zx + ex + zx^ + zx^" y"-a^^ + ex^ 

2 . 2  .  . 2  
+ Ex^ y^ ag^ = Sujx^ (17.IG) 

. 2  2  . 3  . . 3  . 2 . 2  
z/ a^^^ + zx\^ ag^ 4 zy- a^^ + zx^"- a^^ + zx^ y^" a^^ 

.4 . . 2 
+ Ey^ ag^ = Eu^V (17.11) 

where E implies summation on i over the nine cell points. 

Equations 17.6-17.11 are a system of six linear 

algebraic equations for the unknowns a^^ []i = 1,2,...6). This 

system can be written ir. matrix form to include all variables 

u^ (v = 1,2,3,4) as 

SA = U (17.12) 

where 
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s = 

ex' 

ey^ 

Ex 

Ey 
i2 

Ex 

i2 
LX 

ex^y^ 

Ex 

ex^yi 

ey 

ex^yi 

ey 

ex^yi 

. 2 . 
Ex y^ 

Ey 
±3 

ex^y^ 

ex^yi 

. 2 , 2  
ex^ y^ 

ex^ y^ 

exiyi^ 

Ex 
i2 

. 3 
Ex" 

i  

Ex 
±4 

i2 
Ey 

.  . 2  
ex^yi 

i^ i -• ^ Ex y^ Ey^ 

Ex y Ex y i 

. 2  . 2  
ex^ y^ 

.2 i2 ^4 
ex- y^ eyi 

(17.13) 

A = 

'11 

^21 

31 

'41 

^51 

'61 

'12 

'22 

32 

'42 

^52 

'62 

'13 

'23 

33 

'43 

^"53 

'63 

'14 

'24 

'34 

'44 

^54 

'64 

(17.14) 
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au 
1 

zu2 

u (17.15) 

l'u^x^y^ 

. , 2 . . 2 
zu^x^ eugx 

/.u^y 
. . 2 . . 2 

eu^yi euay 

The coefficient matrix S in Eq. 17.12 is symmetric and depends 

only upon the cell point coordinates used in the least squares 

fit. It is the same for all four variables for all time. Only 

the nonhomogcîneous terms depend on the values of the dependent 

variables. Thus, it is only necessary to invert the 

coefficient matrix once in order to determine the polynomial 

coefficients for all four variables. 
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